| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cfval |
⊢ ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ) |
| 2 |
|
cardon |
⊢ ( card ‘ 𝑦 ) ∈ On |
| 3 |
|
eleq1 |
⊢ ( 𝑥 = ( card ‘ 𝑦 ) → ( 𝑥 ∈ On ↔ ( card ‘ 𝑦 ) ∈ On ) ) |
| 4 |
2 3
|
mpbiri |
⊢ ( 𝑥 = ( card ‘ 𝑦 ) → 𝑥 ∈ On ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) → 𝑥 ∈ On ) |
| 6 |
5
|
exlimiv |
⊢ ( ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) → 𝑥 ∈ On ) |
| 7 |
6
|
abssi |
⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ⊆ On |
| 8 |
|
cflem |
⊢ ( 𝐴 ∈ On → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) ) |
| 9 |
|
abn0 |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ≠ ∅ ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) ) |
| 10 |
8 9
|
sylibr |
⊢ ( 𝐴 ∈ On → { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ≠ ∅ ) |
| 11 |
|
onint |
⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ⊆ On ∧ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ≠ ∅ ) → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ) |
| 12 |
7 10 11
|
sylancr |
⊢ ( 𝐴 ∈ On → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ) |
| 13 |
1 12
|
eqeltrd |
⊢ ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ) |
| 14 |
|
fvex |
⊢ ( cf ‘ 𝐴 ) ∈ V |
| 15 |
|
eqeq1 |
⊢ ( 𝑥 = ( cf ‘ 𝐴 ) → ( 𝑥 = ( card ‘ 𝑦 ) ↔ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ) |
| 16 |
15
|
anbi1d |
⊢ ( 𝑥 = ( cf ‘ 𝐴 ) → ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) ↔ ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) ) ) |
| 17 |
16
|
exbidv |
⊢ ( 𝑥 = ( cf ‘ 𝐴 ) → ( ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) ↔ ∃ 𝑦 ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) ) ) |
| 18 |
14 17
|
elab |
⊢ ( ( cf ‘ 𝐴 ) ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) } ↔ ∃ 𝑦 ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) ) |
| 19 |
13 18
|
sylib |
⊢ ( 𝐴 ∈ On → ∃ 𝑦 ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) ) |
| 20 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) → ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) |
| 21 |
|
onss |
⊢ ( 𝐴 ∈ On → 𝐴 ⊆ On ) |
| 22 |
|
sstr |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ On ) → 𝑦 ⊆ On ) |
| 23 |
21 22
|
sylan2 |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ∈ On ) → 𝑦 ⊆ On ) |
| 24 |
23
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ⊆ On ) |
| 25 |
24
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) → 𝑦 ⊆ On ) |
| 26 |
|
vex |
⊢ 𝑦 ∈ V |
| 27 |
|
onssnum |
⊢ ( ( 𝑦 ∈ V ∧ 𝑦 ⊆ On ) → 𝑦 ∈ dom card ) |
| 28 |
26 27
|
mpan |
⊢ ( 𝑦 ⊆ On → 𝑦 ∈ dom card ) |
| 29 |
|
cardid2 |
⊢ ( 𝑦 ∈ dom card → ( card ‘ 𝑦 ) ≈ 𝑦 ) |
| 30 |
28 29
|
syl |
⊢ ( 𝑦 ⊆ On → ( card ‘ 𝑦 ) ≈ 𝑦 ) |
| 31 |
30
|
adantl |
⊢ ( ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ 𝑦 ⊆ On ) → ( card ‘ 𝑦 ) ≈ 𝑦 ) |
| 32 |
|
breq1 |
⊢ ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) → ( ( cf ‘ 𝐴 ) ≈ 𝑦 ↔ ( card ‘ 𝑦 ) ≈ 𝑦 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ 𝑦 ⊆ On ) → ( ( cf ‘ 𝐴 ) ≈ 𝑦 ↔ ( card ‘ 𝑦 ) ≈ 𝑦 ) ) |
| 34 |
31 33
|
mpbird |
⊢ ( ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ 𝑦 ⊆ On ) → ( cf ‘ 𝐴 ) ≈ 𝑦 ) |
| 35 |
|
bren |
⊢ ( ( cf ‘ 𝐴 ) ≈ 𝑦 ↔ ∃ 𝑓 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 ) |
| 36 |
34 35
|
sylib |
⊢ ( ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ 𝑦 ⊆ On ) → ∃ 𝑓 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 ) |
| 37 |
20 25 36
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) → ∃ 𝑓 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 ) |
| 38 |
|
f1of1 |
⊢ ( 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 → 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝑦 ) |
| 39 |
|
f1ss |
⊢ ( ( 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) → 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ) |
| 40 |
39
|
ancoms |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝑦 ) → 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ) |
| 41 |
38 40
|
sylan2 |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 ) → 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ) |
| 42 |
41
|
adantlr |
⊢ ( ( ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ∧ 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 ) → 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ) |
| 43 |
42
|
3adant1 |
⊢ ( ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ∧ 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 ) → 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ) |
| 44 |
|
f1ofo |
⊢ ( 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 → 𝑓 : ( cf ‘ 𝐴 ) –onto→ 𝑦 ) |
| 45 |
|
foelrn |
⊢ ( ( 𝑓 : ( cf ‘ 𝐴 ) –onto→ 𝑦 ∧ 𝑠 ∈ 𝑦 ) → ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑠 = ( 𝑓 ‘ 𝑤 ) ) |
| 46 |
|
sseq2 |
⊢ ( 𝑠 = ( 𝑓 ‘ 𝑤 ) → ( 𝑧 ⊆ 𝑠 ↔ 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 47 |
46
|
biimpcd |
⊢ ( 𝑧 ⊆ 𝑠 → ( 𝑠 = ( 𝑓 ‘ 𝑤 ) → 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 48 |
47
|
reximdv |
⊢ ( 𝑧 ⊆ 𝑠 → ( ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑠 = ( 𝑓 ‘ 𝑤 ) → ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 49 |
45 48
|
syl5com |
⊢ ( ( 𝑓 : ( cf ‘ 𝐴 ) –onto→ 𝑦 ∧ 𝑠 ∈ 𝑦 ) → ( 𝑧 ⊆ 𝑠 → ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 50 |
49
|
rexlimdva |
⊢ ( 𝑓 : ( cf ‘ 𝐴 ) –onto→ 𝑦 → ( ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 → ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 51 |
50
|
ralimdv |
⊢ ( 𝑓 : ( cf ‘ 𝐴 ) –onto→ 𝑦 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 → ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 52 |
44 51
|
syl |
⊢ ( 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 → ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 53 |
52
|
impcom |
⊢ ( ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ∧ 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) |
| 54 |
53
|
adantll |
⊢ ( ( ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ∧ 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) |
| 55 |
54
|
3adant1 |
⊢ ( ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ∧ 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) |
| 56 |
43 55
|
jca |
⊢ ( ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ∧ 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 ) → ( 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 57 |
56
|
3expia |
⊢ ( ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) → ( 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 → ( 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 58 |
57
|
eximdv |
⊢ ( ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) → ( ∃ 𝑓 𝑓 : ( cf ‘ 𝐴 ) –1-1-onto→ 𝑦 → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 59 |
37 58
|
mpd |
⊢ ( ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 60 |
59
|
expl |
⊢ ( 𝐴 ∈ On → ( ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 61 |
60
|
exlimdv |
⊢ ( 𝐴 ∈ On → ( ∃ 𝑦 ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ) ) → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 62 |
19 61
|
mpd |
⊢ ( 𝐴 ∈ On → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |