Description: A Cauchy filter is a filter. (Contributed by Mario Carneiro, 13-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | cfilfil | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscfil | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) | |
2 | 1 | simprbda | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |