Metamath Proof Explorer


Theorem cfili

Description: Property of a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Assertion cfili ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑥𝐹𝑦𝑥𝑧𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑅 )

Proof

Step Hyp Ref Expression
1 df-cfil CauFil = ( 𝑑 ran ∞Met ↦ { 𝑓 ∈ ( Fil ‘ dom dom 𝑑 ) ∣ ∀ 𝑥 ∈ ℝ+𝑦𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } )
2 1 mptrcl ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → 𝐷 ran ∞Met )
3 xmetunirn ( 𝐷 ran ∞Met ↔ 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) )
4 2 3 sylib ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) )
5 iscfil2 ( 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ dom dom 𝐷 ) ∧ ∀ 𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟 ) ) )
6 4 5 syl ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ dom dom 𝐷 ) ∧ ∀ 𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟 ) ) )
7 6 ibi ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → ( 𝐹 ∈ ( Fil ‘ dom dom 𝐷 ) ∧ ∀ 𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟 ) )
8 7 simprd ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → ∀ 𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟 )
9 breq2 ( 𝑟 = 𝑅 → ( ( 𝑦 𝐷 𝑧 ) < 𝑟 ↔ ( 𝑦 𝐷 𝑧 ) < 𝑅 ) )
10 9 2ralbidv ( 𝑟 = 𝑅 → ( ∀ 𝑦𝑥𝑧𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟 ↔ ∀ 𝑦𝑥𝑧𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑅 ) )
11 10 rexbidv ( 𝑟 = 𝑅 → ( ∃ 𝑥𝐹𝑦𝑥𝑧𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟 ↔ ∃ 𝑥𝐹𝑦𝑥𝑧𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑅 ) )
12 11 rspccva ( ( ∀ 𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟𝑅 ∈ ℝ+ ) → ∃ 𝑥𝐹𝑦𝑥𝑧𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑅 )
13 8 12 sylan ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑥𝐹𝑦𝑥𝑧𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑅 )