Step |
Hyp |
Ref |
Expression |
1 |
|
df-cfil |
⊢ CauFil = ( 𝑑 ∈ ∪ ran ∞Met ↦ { 𝑓 ∈ ( Fil ‘ dom dom 𝑑 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } ) |
2 |
1
|
mptrcl |
⊢ ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → 𝐷 ∈ ∪ ran ∞Met ) |
3 |
|
xmetunirn |
⊢ ( 𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) |
4 |
2 3
|
sylib |
⊢ ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) |
5 |
|
iscfil2 |
⊢ ( 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ dom dom 𝐷 ) ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟 ) ) ) |
6 |
4 5
|
syl |
⊢ ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ dom dom 𝐷 ) ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟 ) ) ) |
7 |
6
|
ibi |
⊢ ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → ( 𝐹 ∈ ( Fil ‘ dom dom 𝐷 ) ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟 ) ) |
8 |
7
|
simprd |
⊢ ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟 ) |
9 |
|
breq2 |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑦 𝐷 𝑧 ) < 𝑟 ↔ ( 𝑦 𝐷 𝑧 ) < 𝑅 ) ) |
10 |
9
|
2ralbidv |
⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟 ↔ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑅 ) ) |
11 |
10
|
rexbidv |
⊢ ( 𝑟 = 𝑅 → ( ∃ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟 ↔ ∃ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑅 ) ) |
12 |
11
|
rspccva |
⊢ ( ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟 ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑅 ) |
13 |
8 12
|
sylan |
⊢ ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑅 ) |