Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
2 |
|
filfbas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
4 |
|
simp3 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝑌 ∈ 𝐹 ) |
5 |
|
fbncp |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ¬ ( 𝑋 ∖ 𝑌 ) ∈ 𝐹 ) |
6 |
3 4 5
|
syl2anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ¬ ( 𝑋 ∖ 𝑌 ) ∈ 𝐹 ) |
7 |
|
filelss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝑌 ⊆ 𝑋 ) |
8 |
7
|
3adant1 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝑌 ⊆ 𝑋 ) |
9 |
|
trfil3 |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ↔ ¬ ( 𝑋 ∖ 𝑌 ) ∈ 𝐹 ) ) |
10 |
1 8 9
|
syl2anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ↔ ¬ ( 𝑋 ∖ 𝑌 ) ∈ 𝐹 ) ) |
11 |
6 10
|
mpbird |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ) |
13 |
|
cfili |
⊢ ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑠 ∈ 𝐹 ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 ) |
14 |
13
|
adantll |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑠 ∈ 𝐹 ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 ) |
15 |
|
simpll2 |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
16 |
|
simpll3 |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑌 ∈ 𝐹 ) |
17 |
15 16
|
jca |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ) |
18 |
|
elrestr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ∧ 𝑠 ∈ 𝐹 ) → ( 𝑠 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) ) |
19 |
18
|
3expa |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑠 ∈ 𝐹 ) → ( 𝑠 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) ) |
20 |
17 19
|
sylan |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) → ( 𝑠 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) ) |
21 |
|
inss1 |
⊢ ( 𝑠 ∩ 𝑌 ) ⊆ 𝑠 |
22 |
|
ss2ralv |
⊢ ( ( 𝑠 ∩ 𝑌 ) ⊆ 𝑠 → ( ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 → ∀ 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
23 |
21 22
|
ax-mp |
⊢ ( ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 → ∀ 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ) |
24 |
|
elinel2 |
⊢ ( 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) → 𝑢 ∈ 𝑌 ) |
25 |
|
elinel2 |
⊢ ( 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) → 𝑣 ∈ 𝑌 ) |
26 |
|
ovres |
⊢ ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) = ( 𝑢 𝐷 𝑣 ) ) |
27 |
26
|
breq1d |
⊢ ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ↔ ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
28 |
24 25 27
|
syl2an |
⊢ ( ( 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) ∧ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ) → ( ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ↔ ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
29 |
28
|
ralbidva |
⊢ ( 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) → ( ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ↔ ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
30 |
29
|
ralbiia |
⊢ ( ∀ 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ↔ ∀ 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ) |
31 |
23 30
|
sylibr |
⊢ ( ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 → ∀ 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) |
32 |
|
raleq |
⊢ ( 𝑦 = ( 𝑠 ∩ 𝑌 ) → ( ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ↔ ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) ) |
33 |
32
|
raleqbi1dv |
⊢ ( 𝑦 = ( 𝑠 ∩ 𝑌 ) → ( ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ↔ ∀ 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) ) |
34 |
33
|
rspcev |
⊢ ( ( ( 𝑠 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) ∧ ∀ 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) → ∃ 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) |
35 |
34
|
ex |
⊢ ( ( 𝑠 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) → ( ∀ 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 → ∃ 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) ) |
36 |
20 31 35
|
syl2im |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) → ( ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 → ∃ 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) ) |
37 |
36
|
rexlimdva |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑠 ∈ 𝐹 ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 → ∃ 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) ) |
38 |
14 37
|
mpd |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) |
39 |
38
|
ralrimiva |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) |
40 |
|
simp1 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
41 |
|
xmetres2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ) |
42 |
40 8 41
|
syl2anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ) |
43 |
42
|
adantr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ) |
44 |
|
iscfil2 |
⊢ ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) → ( ( 𝐹 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ↔ ( ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) ) ) |
45 |
43 44
|
syl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → ( ( 𝐹 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ↔ ( ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) ) ) |
46 |
12 39 45
|
mpbir2and |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → ( 𝐹 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
47 |
46
|
ex |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → ( 𝐹 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |
48 |
|
cfilresi |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( 𝑋 filGen ( 𝐹 ↾t 𝑌 ) ) ∈ ( CauFil ‘ 𝐷 ) ) |
49 |
48
|
ex |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝐹 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) → ( 𝑋 filGen ( 𝐹 ↾t 𝑌 ) ) ∈ ( CauFil ‘ 𝐷 ) ) ) |
50 |
49
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝐹 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) → ( 𝑋 filGen ( 𝐹 ↾t 𝑌 ) ) ∈ ( CauFil ‘ 𝐷 ) ) ) |
51 |
|
fgtr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 filGen ( 𝐹 ↾t 𝑌 ) ) = 𝐹 ) |
52 |
51
|
3adant1 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 filGen ( 𝐹 ↾t 𝑌 ) ) = 𝐹 ) |
53 |
52
|
eleq1d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝑋 filGen ( 𝐹 ↾t 𝑌 ) ) ∈ ( CauFil ‘ 𝐷 ) ↔ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ) |
54 |
50 53
|
sylibd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝐹 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) → 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ) |
55 |
47 54
|
impbid |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |