| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( CauFil ‘ 𝐷 ) )  ∧  ( 𝐺  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝐺 ) )  →  𝐺  ∈  ( Fil ‘ 𝑋 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( CauFil ‘ 𝐷 ) )  ∧  ( 𝐺  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝐺 ) )  →  𝐹  ⊆  𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							iscfil | 
							⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝐹  ∈  ( CauFil ‘ 𝐷 )  ↔  ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝐹 ( 𝐷  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 ) ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							simplbda | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( CauFil ‘ 𝐷 ) )  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝐹 ( 𝐷  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( CauFil ‘ 𝐷 ) )  ∧  ( 𝐺  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝐺 ) )  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝐹 ( 𝐷  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ssrexv | 
							⊢ ( 𝐹  ⊆  𝐺  →  ( ∃ 𝑦  ∈  𝐹 ( 𝐷  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 )  →  ∃ 𝑦  ∈  𝐺 ( 𝐷  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							ralimdv | 
							⊢ ( 𝐹  ⊆  𝐺  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝐹 ( 𝐷  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 )  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝐺 ( 𝐷  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 ) ) )  | 
						
						
							| 8 | 
							
								2 5 7
							 | 
							sylc | 
							⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( CauFil ‘ 𝐷 ) )  ∧  ( 𝐺  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝐺 ) )  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝐺 ( 𝐷  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							iscfil | 
							⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝐺  ∈  ( CauFil ‘ 𝐷 )  ↔  ( 𝐺  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝐺 ( 𝐷  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 ) ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( CauFil ‘ 𝐷 ) )  ∧  ( 𝐺  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝐺 ) )  →  ( 𝐺  ∈  ( CauFil ‘ 𝐷 )  ↔  ( 𝐺  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝐺 ( 𝐷  “  ( 𝑦  ×  𝑦 ) )  ⊆  ( 0 [,) 𝑥 ) ) ) )  | 
						
						
							| 11 | 
							
								1 8 10
							 | 
							mpbir2and | 
							⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹  ∈  ( CauFil ‘ 𝐷 ) )  ∧  ( 𝐺  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝐺 ) )  →  𝐺  ∈  ( CauFil ‘ 𝐷 ) )  |