Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ) → 𝐺 ∈ ( Fil ‘ 𝑋 ) ) |
2 |
|
simprr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ) → 𝐹 ⊆ 𝐺 ) |
3 |
|
iscfil |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) |
4 |
3
|
simplbda |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) |
6 |
|
ssrexv |
⊢ ( 𝐹 ⊆ 𝐺 → ( ∃ 𝑦 ∈ 𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) → ∃ 𝑦 ∈ 𝐺 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) |
7 |
6
|
ralimdv |
⊢ ( 𝐹 ⊆ 𝐺 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐺 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) |
8 |
2 5 7
|
sylc |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐺 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) |
9 |
|
iscfil |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐺 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐺 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) |
10 |
9
|
ad2antrr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ) → ( 𝐺 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐺 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) |
11 |
1 8 10
|
mpbir2and |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ) → 𝐺 ∈ ( CauFil ‘ 𝐷 ) ) |