Metamath Proof Explorer


Theorem cfilss

Description: A filter finer than a Cauchy filter is Cauchy. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Assertion cfilss ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) ) → 𝐺 ∈ ( CauFil ‘ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 simprl ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) ) → 𝐺 ∈ ( Fil ‘ 𝑋 ) )
2 simprr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) ) → 𝐹𝐺 )
3 iscfil ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) )
4 3 simplbda ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → ∀ 𝑥 ∈ ℝ+𝑦𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) )
5 4 adantr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) ) → ∀ 𝑥 ∈ ℝ+𝑦𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) )
6 ssrexv ( 𝐹𝐺 → ( ∃ 𝑦𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) → ∃ 𝑦𝐺 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) )
7 6 ralimdv ( 𝐹𝐺 → ( ∀ 𝑥 ∈ ℝ+𝑦𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) → ∀ 𝑥 ∈ ℝ+𝑦𝐺 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) )
8 2 5 7 sylc ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) ) → ∀ 𝑥 ∈ ℝ+𝑦𝐺 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) )
9 iscfil ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐺 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐺 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) )
10 9 ad2antrr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) ) → ( 𝐺 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐺 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) )
11 1 8 10 mpbir2and ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹𝐺 ) ) → 𝐺 ∈ ( CauFil ‘ 𝐷 ) )