Step |
Hyp |
Ref |
Expression |
1 |
|
xmetpsmet |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
2 |
|
cfilucfil2 |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ↔ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) |
3 |
2
|
anbi2d |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) ) |
4 |
|
filfbas |
⊢ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) → 𝐶 ∈ ( fBas ‘ 𝑋 ) ) |
5 |
4
|
pm4.71i |
⊢ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑋 ) ) ) |
6 |
5
|
anbi1i |
⊢ ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ↔ ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) |
7 |
|
anass |
⊢ ( ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) |
8 |
6 7
|
bitr2i |
⊢ ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) |
9 |
3 8
|
bitrdi |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) |
10 |
1 9
|
sylan2 |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) |
11 |
|
iscfil |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐶 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐶 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) |
13 |
10 12
|
bitr4d |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ↔ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) ) |