Metamath Proof Explorer


Theorem cfilucfil4

Description: Given a metric D and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the Cauchy filters for the metric. (Contributed by Thierry Arnoux, 15-Dec-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Assertion cfilucfil4 ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐶 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ↔ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 cfilucfil3 ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ↔ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) )
2 cfilfil ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) → 𝐶 ∈ ( Fil ‘ 𝑋 ) )
3 2 ex ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐶 ∈ ( CauFil ‘ 𝐷 ) → 𝐶 ∈ ( Fil ‘ 𝑋 ) ) )
4 3 adantl ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐶 ∈ ( CauFil ‘ 𝐷 ) → 𝐶 ∈ ( Fil ‘ 𝑋 ) ) )
5 4 pm4.71rd ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐶 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) ) )
6 1 5 bitrd ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) ) )
7 pm5.32 ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) → ( 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ↔ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) ) ↔ ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) ) )
8 6 7 sylibr ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐶 ∈ ( Fil ‘ 𝑋 ) → ( 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ↔ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) ) )
9 8 3impia ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐶 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ↔ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) )