| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscfilu | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  ( 𝐹  ∈  ( CauFilu ‘ 𝑈 )  ↔  ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  ∀ 𝑣  ∈  𝑈 ∃ 𝑎  ∈  𝐹 ( 𝑎  ×  𝑎 )  ⊆  𝑣 ) ) ) | 
						
							| 2 | 1 | simplbda | ⊢ ( ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ∧  𝐹  ∈  ( CauFilu ‘ 𝑈 ) )  →  ∀ 𝑣  ∈  𝑈 ∃ 𝑎  ∈  𝐹 ( 𝑎  ×  𝑎 )  ⊆  𝑣 ) | 
						
							| 3 | 2 | 3adant3 | ⊢ ( ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ∧  𝐹  ∈  ( CauFilu ‘ 𝑈 )  ∧  𝑉  ∈  𝑈 )  →  ∀ 𝑣  ∈  𝑈 ∃ 𝑎  ∈  𝐹 ( 𝑎  ×  𝑎 )  ⊆  𝑣 ) | 
						
							| 4 |  | sseq2 | ⊢ ( 𝑣  =  𝑉  →  ( ( 𝑎  ×  𝑎 )  ⊆  𝑣  ↔  ( 𝑎  ×  𝑎 )  ⊆  𝑉 ) ) | 
						
							| 5 | 4 | rexbidv | ⊢ ( 𝑣  =  𝑉  →  ( ∃ 𝑎  ∈  𝐹 ( 𝑎  ×  𝑎 )  ⊆  𝑣  ↔  ∃ 𝑎  ∈  𝐹 ( 𝑎  ×  𝑎 )  ⊆  𝑉 ) ) | 
						
							| 6 | 5 | rspcv | ⊢ ( 𝑉  ∈  𝑈  →  ( ∀ 𝑣  ∈  𝑈 ∃ 𝑎  ∈  𝐹 ( 𝑎  ×  𝑎 )  ⊆  𝑣  →  ∃ 𝑎  ∈  𝐹 ( 𝑎  ×  𝑎 )  ⊆  𝑉 ) ) | 
						
							| 7 | 6 | 3ad2ant3 | ⊢ ( ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ∧  𝐹  ∈  ( CauFilu ‘ 𝑈 )  ∧  𝑉  ∈  𝑈 )  →  ( ∀ 𝑣  ∈  𝑈 ∃ 𝑎  ∈  𝐹 ( 𝑎  ×  𝑎 )  ⊆  𝑣  →  ∃ 𝑎  ∈  𝐹 ( 𝑎  ×  𝑎 )  ⊆  𝑉 ) ) | 
						
							| 8 | 3 7 | mpd | ⊢ ( ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ∧  𝐹  ∈  ( CauFilu ‘ 𝑈 )  ∧  𝑉  ∈  𝑈 )  →  ∃ 𝑎  ∈  𝐹 ( 𝑎  ×  𝑎 )  ⊆  𝑉 ) |