Step |
Hyp |
Ref |
Expression |
1 |
|
iscfilu |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) ) |
2 |
1
|
simplbda |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) → ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
3 |
2
|
3adant3 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ 𝑉 ∈ 𝑈 ) → ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
4 |
|
sseq2 |
⊢ ( 𝑣 = 𝑉 → ( ( 𝑎 × 𝑎 ) ⊆ 𝑣 ↔ ( 𝑎 × 𝑎 ) ⊆ 𝑉 ) ) |
5 |
4
|
rexbidv |
⊢ ( 𝑣 = 𝑉 → ( ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ↔ ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑉 ) ) |
6 |
5
|
rspcv |
⊢ ( 𝑉 ∈ 𝑈 → ( ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 → ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑉 ) ) |
7 |
6
|
3ad2ant3 |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ 𝑉 ∈ 𝑈 ) → ( ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 → ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑉 ) ) |
8 |
3 7
|
mpd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ 𝑉 ∈ 𝑈 ) → ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑉 ) |