Metamath Proof Explorer
		
		
		
		Description:  A Cauchy filter base is a filter base.  (Contributed by Thierry Arnoux, 19-Nov-2017)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | cfilufbas | ⊢  ( ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ∧  𝐹  ∈  ( CauFilu ‘ 𝑈 ) )  →  𝐹  ∈  ( fBas ‘ 𝑋 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscfilu | ⊢ ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  →  ( 𝐹  ∈  ( CauFilu ‘ 𝑈 )  ↔  ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  ∀ 𝑣  ∈  𝑈 ∃ 𝑎  ∈  𝐹 ( 𝑎  ×  𝑎 )  ⊆  𝑣 ) ) ) | 
						
							| 2 | 1 | simprbda | ⊢ ( ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ∧  𝐹  ∈  ( CauFilu ‘ 𝑈 ) )  →  𝐹  ∈  ( fBas ‘ 𝑋 ) ) |