Step |
Hyp |
Ref |
Expression |
1 |
|
cfilufbas |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
2 |
|
fgcl |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) ) |
3 |
|
filfbas |
⊢ ( ( 𝑋 filGen 𝐹 ) ∈ ( Fil ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) ∈ ( fBas ‘ 𝑋 ) ) |
4 |
1 2 3
|
3syl |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) → ( 𝑋 filGen 𝐹 ) ∈ ( fBas ‘ 𝑋 ) ) |
5 |
1
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
6 |
|
ssfg |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |
7 |
5 6
|
syl |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |
8 |
|
simplr |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) → 𝑏 ∈ 𝐹 ) |
9 |
7 8
|
sseldd |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) → 𝑏 ∈ ( 𝑋 filGen 𝐹 ) ) |
10 |
|
id |
⊢ ( 𝑎 = 𝑏 → 𝑎 = 𝑏 ) |
11 |
10
|
sqxpeqd |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 × 𝑎 ) = ( 𝑏 × 𝑏 ) ) |
12 |
11
|
sseq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 × 𝑎 ) ⊆ 𝑣 ↔ ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) ) |
13 |
12
|
rspcev |
⊢ ( ( 𝑏 ∈ ( 𝑋 filGen 𝐹 ) ∧ ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) → ∃ 𝑎 ∈ ( 𝑋 filGen 𝐹 ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
14 |
9 13
|
sylancom |
⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝐹 ) ∧ ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) → ∃ 𝑎 ∈ ( 𝑋 filGen 𝐹 ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
15 |
|
iscfilu |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑏 ∈ 𝐹 ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) ) ) |
16 |
15
|
simplbda |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) → ∀ 𝑣 ∈ 𝑈 ∃ 𝑏 ∈ 𝐹 ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) |
17 |
16
|
r19.21bi |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑏 ∈ 𝐹 ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) |
18 |
14 17
|
r19.29a |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑎 ∈ ( 𝑋 filGen 𝐹 ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
19 |
18
|
ralrimiva |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) → ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ ( 𝑋 filGen 𝐹 ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
20 |
|
iscfilu |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ( 𝑋 filGen 𝐹 ) ∈ ( CauFilu ‘ 𝑈 ) ↔ ( ( 𝑋 filGen 𝐹 ) ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ ( 𝑋 filGen 𝐹 ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) → ( ( 𝑋 filGen 𝐹 ) ∈ ( CauFilu ‘ 𝑈 ) ↔ ( ( 𝑋 filGen 𝐹 ) ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ ( 𝑋 filGen 𝐹 ) ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) ) |
22 |
4 19 21
|
mpbir2and |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) → ( 𝑋 filGen 𝐹 ) ∈ ( CauFilu ‘ 𝑈 ) ) |