| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difeq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ∖  𝑥 )  =  ( 𝐴  ∖  𝑦 ) ) | 
						
							| 2 | 1 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐴  ∖  𝑥 )  ∈  Fin  ↔  ( 𝐴  ∖  𝑦 )  ∈  Fin ) ) | 
						
							| 3 | 2 | elrab | ⊢ ( 𝑦  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝐴  ∖  𝑥 )  ∈  Fin }  ↔  ( 𝑦  ∈  𝒫  𝑋  ∧  ( 𝐴  ∖  𝑦 )  ∈  Fin ) ) | 
						
							| 4 |  | velpw | ⊢ ( 𝑦  ∈  𝒫  𝑋  ↔  𝑦  ⊆  𝑋 ) | 
						
							| 5 | 4 | anbi1i | ⊢ ( ( 𝑦  ∈  𝒫  𝑋  ∧  ( 𝐴  ∖  𝑦 )  ∈  Fin )  ↔  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∖  𝑦 )  ∈  Fin ) ) | 
						
							| 6 | 3 5 | bitri | ⊢ ( 𝑦  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝐴  ∖  𝑥 )  ∈  Fin }  ↔  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∖  𝑦 )  ∈  Fin ) ) | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ⊆  𝑋  ∧  ¬  𝐴  ∈  Fin )  →  ( 𝑦  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝐴  ∖  𝑥 )  ∈  Fin }  ↔  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∖  𝑦 )  ∈  Fin ) ) ) | 
						
							| 8 |  | simp1 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ⊆  𝑋  ∧  ¬  𝐴  ∈  Fin )  →  𝑋  ∈  𝑉 ) | 
						
							| 9 |  | ssdif0 | ⊢ ( 𝐴  ⊆  𝑋  ↔  ( 𝐴  ∖  𝑋 )  =  ∅ ) | 
						
							| 10 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 11 |  | eleq1 | ⊢ ( ( 𝐴  ∖  𝑋 )  =  ∅  →  ( ( 𝐴  ∖  𝑋 )  ∈  Fin  ↔  ∅  ∈  Fin ) ) | 
						
							| 12 | 10 11 | mpbiri | ⊢ ( ( 𝐴  ∖  𝑋 )  =  ∅  →  ( 𝐴  ∖  𝑋 )  ∈  Fin ) | 
						
							| 13 | 9 12 | sylbi | ⊢ ( 𝐴  ⊆  𝑋  →  ( 𝐴  ∖  𝑋 )  ∈  Fin ) | 
						
							| 14 |  | difeq2 | ⊢ ( 𝑦  =  𝑋  →  ( 𝐴  ∖  𝑦 )  =  ( 𝐴  ∖  𝑋 ) ) | 
						
							| 15 | 14 | eleq1d | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝐴  ∖  𝑦 )  ∈  Fin  ↔  ( 𝐴  ∖  𝑋 )  ∈  Fin ) ) | 
						
							| 16 | 15 | sbcieg | ⊢ ( 𝑋  ∈  𝑉  →  ( [ 𝑋  /  𝑦 ] ( 𝐴  ∖  𝑦 )  ∈  Fin  ↔  ( 𝐴  ∖  𝑋 )  ∈  Fin ) ) | 
						
							| 17 | 16 | biimpar | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝐴  ∖  𝑋 )  ∈  Fin )  →  [ 𝑋  /  𝑦 ] ( 𝐴  ∖  𝑦 )  ∈  Fin ) | 
						
							| 18 | 13 17 | sylan2 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ⊆  𝑋 )  →  [ 𝑋  /  𝑦 ] ( 𝐴  ∖  𝑦 )  ∈  Fin ) | 
						
							| 19 | 18 | 3adant3 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ⊆  𝑋  ∧  ¬  𝐴  ∈  Fin )  →  [ 𝑋  /  𝑦 ] ( 𝐴  ∖  𝑦 )  ∈  Fin ) | 
						
							| 20 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 21 |  | difeq2 | ⊢ ( 𝑦  =  ∅  →  ( 𝐴  ∖  𝑦 )  =  ( 𝐴  ∖  ∅ ) ) | 
						
							| 22 | 21 | eleq1d | ⊢ ( 𝑦  =  ∅  →  ( ( 𝐴  ∖  𝑦 )  ∈  Fin  ↔  ( 𝐴  ∖  ∅ )  ∈  Fin ) ) | 
						
							| 23 | 20 22 | sbcie | ⊢ ( [ ∅  /  𝑦 ] ( 𝐴  ∖  𝑦 )  ∈  Fin  ↔  ( 𝐴  ∖  ∅ )  ∈  Fin ) | 
						
							| 24 |  | dif0 | ⊢ ( 𝐴  ∖  ∅ )  =  𝐴 | 
						
							| 25 | 24 | eleq1i | ⊢ ( ( 𝐴  ∖  ∅ )  ∈  Fin  ↔  𝐴  ∈  Fin ) | 
						
							| 26 | 23 25 | sylbb | ⊢ ( [ ∅  /  𝑦 ] ( 𝐴  ∖  𝑦 )  ∈  Fin  →  𝐴  ∈  Fin ) | 
						
							| 27 | 26 | con3i | ⊢ ( ¬  𝐴  ∈  Fin  →  ¬  [ ∅  /  𝑦 ] ( 𝐴  ∖  𝑦 )  ∈  Fin ) | 
						
							| 28 | 27 | 3ad2ant3 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ⊆  𝑋  ∧  ¬  𝐴  ∈  Fin )  →  ¬  [ ∅  /  𝑦 ] ( 𝐴  ∖  𝑦 )  ∈  Fin ) | 
						
							| 29 |  | sscon | ⊢ ( 𝑤  ⊆  𝑧  →  ( 𝐴  ∖  𝑧 )  ⊆  ( 𝐴  ∖  𝑤 ) ) | 
						
							| 30 |  | ssfi | ⊢ ( ( ( 𝐴  ∖  𝑤 )  ∈  Fin  ∧  ( 𝐴  ∖  𝑧 )  ⊆  ( 𝐴  ∖  𝑤 ) )  →  ( 𝐴  ∖  𝑧 )  ∈  Fin ) | 
						
							| 31 | 30 | expcom | ⊢ ( ( 𝐴  ∖  𝑧 )  ⊆  ( 𝐴  ∖  𝑤 )  →  ( ( 𝐴  ∖  𝑤 )  ∈  Fin  →  ( 𝐴  ∖  𝑧 )  ∈  Fin ) ) | 
						
							| 32 | 29 31 | syl | ⊢ ( 𝑤  ⊆  𝑧  →  ( ( 𝐴  ∖  𝑤 )  ∈  Fin  →  ( 𝐴  ∖  𝑧 )  ∈  Fin ) ) | 
						
							| 33 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 34 |  | difeq2 | ⊢ ( 𝑦  =  𝑤  →  ( 𝐴  ∖  𝑦 )  =  ( 𝐴  ∖  𝑤 ) ) | 
						
							| 35 | 34 | eleq1d | ⊢ ( 𝑦  =  𝑤  →  ( ( 𝐴  ∖  𝑦 )  ∈  Fin  ↔  ( 𝐴  ∖  𝑤 )  ∈  Fin ) ) | 
						
							| 36 | 33 35 | sbcie | ⊢ ( [ 𝑤  /  𝑦 ] ( 𝐴  ∖  𝑦 )  ∈  Fin  ↔  ( 𝐴  ∖  𝑤 )  ∈  Fin ) | 
						
							| 37 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 38 |  | difeq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝐴  ∖  𝑦 )  =  ( 𝐴  ∖  𝑧 ) ) | 
						
							| 39 | 38 | eleq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝐴  ∖  𝑦 )  ∈  Fin  ↔  ( 𝐴  ∖  𝑧 )  ∈  Fin ) ) | 
						
							| 40 | 37 39 | sbcie | ⊢ ( [ 𝑧  /  𝑦 ] ( 𝐴  ∖  𝑦 )  ∈  Fin  ↔  ( 𝐴  ∖  𝑧 )  ∈  Fin ) | 
						
							| 41 | 32 36 40 | 3imtr4g | ⊢ ( 𝑤  ⊆  𝑧  →  ( [ 𝑤  /  𝑦 ] ( 𝐴  ∖  𝑦 )  ∈  Fin  →  [ 𝑧  /  𝑦 ] ( 𝐴  ∖  𝑦 )  ∈  Fin ) ) | 
						
							| 42 | 41 | 3ad2ant3 | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐴  ⊆  𝑋  ∧  ¬  𝐴  ∈  Fin )  ∧  𝑧  ⊆  𝑋  ∧  𝑤  ⊆  𝑧 )  →  ( [ 𝑤  /  𝑦 ] ( 𝐴  ∖  𝑦 )  ∈  Fin  →  [ 𝑧  /  𝑦 ] ( 𝐴  ∖  𝑦 )  ∈  Fin ) ) | 
						
							| 43 |  | difindi | ⊢ ( 𝐴  ∖  ( 𝑧  ∩  𝑤 ) )  =  ( ( 𝐴  ∖  𝑧 )  ∪  ( 𝐴  ∖  𝑤 ) ) | 
						
							| 44 |  | unfi | ⊢ ( ( ( 𝐴  ∖  𝑧 )  ∈  Fin  ∧  ( 𝐴  ∖  𝑤 )  ∈  Fin )  →  ( ( 𝐴  ∖  𝑧 )  ∪  ( 𝐴  ∖  𝑤 ) )  ∈  Fin ) | 
						
							| 45 | 43 44 | eqeltrid | ⊢ ( ( ( 𝐴  ∖  𝑧 )  ∈  Fin  ∧  ( 𝐴  ∖  𝑤 )  ∈  Fin )  →  ( 𝐴  ∖  ( 𝑧  ∩  𝑤 ) )  ∈  Fin ) | 
						
							| 46 | 45 | a1i | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐴  ⊆  𝑋  ∧  ¬  𝐴  ∈  Fin )  ∧  𝑧  ⊆  𝑋  ∧  𝑤  ⊆  𝑋 )  →  ( ( ( 𝐴  ∖  𝑧 )  ∈  Fin  ∧  ( 𝐴  ∖  𝑤 )  ∈  Fin )  →  ( 𝐴  ∖  ( 𝑧  ∩  𝑤 ) )  ∈  Fin ) ) | 
						
							| 47 | 40 36 | anbi12i | ⊢ ( ( [ 𝑧  /  𝑦 ] ( 𝐴  ∖  𝑦 )  ∈  Fin  ∧  [ 𝑤  /  𝑦 ] ( 𝐴  ∖  𝑦 )  ∈  Fin )  ↔  ( ( 𝐴  ∖  𝑧 )  ∈  Fin  ∧  ( 𝐴  ∖  𝑤 )  ∈  Fin ) ) | 
						
							| 48 | 37 | inex1 | ⊢ ( 𝑧  ∩  𝑤 )  ∈  V | 
						
							| 49 |  | difeq2 | ⊢ ( 𝑦  =  ( 𝑧  ∩  𝑤 )  →  ( 𝐴  ∖  𝑦 )  =  ( 𝐴  ∖  ( 𝑧  ∩  𝑤 ) ) ) | 
						
							| 50 | 49 | eleq1d | ⊢ ( 𝑦  =  ( 𝑧  ∩  𝑤 )  →  ( ( 𝐴  ∖  𝑦 )  ∈  Fin  ↔  ( 𝐴  ∖  ( 𝑧  ∩  𝑤 ) )  ∈  Fin ) ) | 
						
							| 51 | 48 50 | sbcie | ⊢ ( [ ( 𝑧  ∩  𝑤 )  /  𝑦 ] ( 𝐴  ∖  𝑦 )  ∈  Fin  ↔  ( 𝐴  ∖  ( 𝑧  ∩  𝑤 ) )  ∈  Fin ) | 
						
							| 52 | 46 47 51 | 3imtr4g | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐴  ⊆  𝑋  ∧  ¬  𝐴  ∈  Fin )  ∧  𝑧  ⊆  𝑋  ∧  𝑤  ⊆  𝑋 )  →  ( ( [ 𝑧  /  𝑦 ] ( 𝐴  ∖  𝑦 )  ∈  Fin  ∧  [ 𝑤  /  𝑦 ] ( 𝐴  ∖  𝑦 )  ∈  Fin )  →  [ ( 𝑧  ∩  𝑤 )  /  𝑦 ] ( 𝐴  ∖  𝑦 )  ∈  Fin ) ) | 
						
							| 53 | 7 8 19 28 42 52 | isfild | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ⊆  𝑋  ∧  ¬  𝐴  ∈  Fin )  →  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝐴  ∖  𝑥 )  ∈  Fin }  ∈  ( Fil ‘ 𝑋 ) ) |