Step |
Hyp |
Ref |
Expression |
1 |
|
difeq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑦 ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) |
3 |
2
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ↔ ( 𝑦 ∈ 𝒫 𝑋 ∧ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) |
4 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 𝑋 ↔ 𝑦 ⊆ 𝑋 ) |
5 |
4
|
anbi1i |
⊢ ( ( 𝑦 ∈ 𝒫 𝑋 ∧ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ↔ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) |
6 |
3 5
|
bitri |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ↔ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) |
7 |
6
|
a1i |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) → ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ↔ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) ) |
8 |
|
simp1 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) → 𝑋 ∈ 𝑉 ) |
9 |
|
ssdif0 |
⊢ ( 𝐴 ⊆ 𝑋 ↔ ( 𝐴 ∖ 𝑋 ) = ∅ ) |
10 |
|
0fin |
⊢ ∅ ∈ Fin |
11 |
|
eleq1 |
⊢ ( ( 𝐴 ∖ 𝑋 ) = ∅ → ( ( 𝐴 ∖ 𝑋 ) ∈ Fin ↔ ∅ ∈ Fin ) ) |
12 |
10 11
|
mpbiri |
⊢ ( ( 𝐴 ∖ 𝑋 ) = ∅ → ( 𝐴 ∖ 𝑋 ) ∈ Fin ) |
13 |
9 12
|
sylbi |
⊢ ( 𝐴 ⊆ 𝑋 → ( 𝐴 ∖ 𝑋 ) ∈ Fin ) |
14 |
|
difeq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝐴 ∖ 𝑦 ) = ( 𝐴 ∖ 𝑋 ) ) |
15 |
14
|
eleq1d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑋 ) ∈ Fin ) ) |
16 |
15
|
sbcieg |
⊢ ( 𝑋 ∈ 𝑉 → ( [ 𝑋 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑋 ) ∈ Fin ) ) |
17 |
16
|
biimpar |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝐴 ∖ 𝑋 ) ∈ Fin ) → [ 𝑋 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ) |
18 |
13 17
|
sylan2 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ) → [ 𝑋 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ) |
19 |
18
|
3adant3 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) → [ 𝑋 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ) |
20 |
|
0ex |
⊢ ∅ ∈ V |
21 |
|
difeq2 |
⊢ ( 𝑦 = ∅ → ( 𝐴 ∖ 𝑦 ) = ( 𝐴 ∖ ∅ ) ) |
22 |
21
|
eleq1d |
⊢ ( 𝑦 = ∅ → ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ ∅ ) ∈ Fin ) ) |
23 |
20 22
|
sbcie |
⊢ ( [ ∅ / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ ∅ ) ∈ Fin ) |
24 |
|
dif0 |
⊢ ( 𝐴 ∖ ∅ ) = 𝐴 |
25 |
24
|
eleq1i |
⊢ ( ( 𝐴 ∖ ∅ ) ∈ Fin ↔ 𝐴 ∈ Fin ) |
26 |
23 25
|
sylbb |
⊢ ( [ ∅ / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin → 𝐴 ∈ Fin ) |
27 |
26
|
con3i |
⊢ ( ¬ 𝐴 ∈ Fin → ¬ [ ∅ / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ) |
28 |
27
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) → ¬ [ ∅ / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ) |
29 |
|
sscon |
⊢ ( 𝑤 ⊆ 𝑧 → ( 𝐴 ∖ 𝑧 ) ⊆ ( 𝐴 ∖ 𝑤 ) ) |
30 |
|
ssfi |
⊢ ( ( ( 𝐴 ∖ 𝑤 ) ∈ Fin ∧ ( 𝐴 ∖ 𝑧 ) ⊆ ( 𝐴 ∖ 𝑤 ) ) → ( 𝐴 ∖ 𝑧 ) ∈ Fin ) |
31 |
30
|
expcom |
⊢ ( ( 𝐴 ∖ 𝑧 ) ⊆ ( 𝐴 ∖ 𝑤 ) → ( ( 𝐴 ∖ 𝑤 ) ∈ Fin → ( 𝐴 ∖ 𝑧 ) ∈ Fin ) ) |
32 |
29 31
|
syl |
⊢ ( 𝑤 ⊆ 𝑧 → ( ( 𝐴 ∖ 𝑤 ) ∈ Fin → ( 𝐴 ∖ 𝑧 ) ∈ Fin ) ) |
33 |
|
vex |
⊢ 𝑤 ∈ V |
34 |
|
difeq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝐴 ∖ 𝑦 ) = ( 𝐴 ∖ 𝑤 ) ) |
35 |
34
|
eleq1d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑤 ) ∈ Fin ) ) |
36 |
33 35
|
sbcie |
⊢ ( [ 𝑤 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑤 ) ∈ Fin ) |
37 |
|
vex |
⊢ 𝑧 ∈ V |
38 |
|
difeq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐴 ∖ 𝑦 ) = ( 𝐴 ∖ 𝑧 ) ) |
39 |
38
|
eleq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑧 ) ∈ Fin ) ) |
40 |
37 39
|
sbcie |
⊢ ( [ 𝑧 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑧 ) ∈ Fin ) |
41 |
32 36 40
|
3imtr4g |
⊢ ( 𝑤 ⊆ 𝑧 → ( [ 𝑤 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin → [ 𝑧 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) |
42 |
41
|
3ad2ant3 |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑧 ) → ( [ 𝑤 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin → [ 𝑧 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) |
43 |
|
difindi |
⊢ ( 𝐴 ∖ ( 𝑧 ∩ 𝑤 ) ) = ( ( 𝐴 ∖ 𝑧 ) ∪ ( 𝐴 ∖ 𝑤 ) ) |
44 |
|
unfi |
⊢ ( ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∧ ( 𝐴 ∖ 𝑤 ) ∈ Fin ) → ( ( 𝐴 ∖ 𝑧 ) ∪ ( 𝐴 ∖ 𝑤 ) ) ∈ Fin ) |
45 |
43 44
|
eqeltrid |
⊢ ( ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∧ ( 𝐴 ∖ 𝑤 ) ∈ Fin ) → ( 𝐴 ∖ ( 𝑧 ∩ 𝑤 ) ) ∈ Fin ) |
46 |
45
|
a1i |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑋 ) → ( ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∧ ( 𝐴 ∖ 𝑤 ) ∈ Fin ) → ( 𝐴 ∖ ( 𝑧 ∩ 𝑤 ) ) ∈ Fin ) ) |
47 |
40 36
|
anbi12i |
⊢ ( ( [ 𝑧 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ∧ [ 𝑤 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ↔ ( ( 𝐴 ∖ 𝑧 ) ∈ Fin ∧ ( 𝐴 ∖ 𝑤 ) ∈ Fin ) ) |
48 |
37
|
inex1 |
⊢ ( 𝑧 ∩ 𝑤 ) ∈ V |
49 |
|
difeq2 |
⊢ ( 𝑦 = ( 𝑧 ∩ 𝑤 ) → ( 𝐴 ∖ 𝑦 ) = ( 𝐴 ∖ ( 𝑧 ∩ 𝑤 ) ) ) |
50 |
49
|
eleq1d |
⊢ ( 𝑦 = ( 𝑧 ∩ 𝑤 ) → ( ( 𝐴 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ ( 𝑧 ∩ 𝑤 ) ) ∈ Fin ) ) |
51 |
48 50
|
sbcie |
⊢ ( [ ( 𝑧 ∩ 𝑤 ) / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ ( 𝑧 ∩ 𝑤 ) ) ∈ Fin ) |
52 |
46 47 51
|
3imtr4g |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑋 ) → ( ( [ 𝑧 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ∧ [ 𝑤 / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ) → [ ( 𝑧 ∩ 𝑤 ) / 𝑦 ] ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) |
53 |
7 8 19 28 42 52
|
isfild |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∖ 𝑥 ) ∈ Fin } ∈ ( Fil ‘ 𝑋 ) ) |