Step |
Hyp |
Ref |
Expression |
1 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) |
2 |
|
ufilb |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 ∈ 𝐹 ↔ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) |
3 |
2
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑋 ∖ 𝑥 ) ∈ Fin ) → ( ¬ 𝑥 ∈ 𝐹 ↔ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) |
4 |
|
ufilfil |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
6 |
|
filfinnfr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ∧ ( 𝑋 ∖ 𝑥 ) ∈ Fin ) → ∩ 𝐹 ≠ ∅ ) |
7 |
6
|
3exp |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 → ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → ∩ 𝐹 ≠ ∅ ) ) ) |
8 |
7
|
com23 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 → ∩ 𝐹 ≠ ∅ ) ) ) |
9 |
5 8
|
syl |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 → ∩ 𝐹 ≠ ∅ ) ) ) |
10 |
9
|
imp |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑋 ∖ 𝑥 ) ∈ Fin ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 → ∩ 𝐹 ≠ ∅ ) ) |
11 |
3 10
|
sylbid |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑋 ∖ 𝑥 ) ∈ Fin ) → ( ¬ 𝑥 ∈ 𝐹 → ∩ 𝐹 ≠ ∅ ) ) |
12 |
11
|
necon4bd |
⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) ∧ ( 𝑋 ∖ 𝑥 ) ∈ Fin ) → ( ∩ 𝐹 = ∅ → 𝑥 ∈ 𝐹 ) ) |
13 |
12
|
ex |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → ( ∩ 𝐹 = ∅ → 𝑥 ∈ 𝐹 ) ) ) |
14 |
13
|
com23 |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ∩ 𝐹 = ∅ → ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) ) ) |
15 |
1 14
|
sylan2 |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → ( ∩ 𝐹 = ∅ → ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) ) ) |
16 |
15
|
ralrimdva |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∩ 𝐹 = ∅ → ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) ) ) |
17 |
4
|
adantr |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
18 |
|
uffixsn |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → { 𝑦 } ∈ 𝐹 ) |
19 |
|
filelss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ { 𝑦 } ∈ 𝐹 ) → { 𝑦 } ⊆ 𝑋 ) |
20 |
17 18 19
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → { 𝑦 } ⊆ 𝑋 ) |
21 |
|
dfss4 |
⊢ ( { 𝑦 } ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ { 𝑦 } ) ) = { 𝑦 } ) |
22 |
20 21
|
sylib |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → ( 𝑋 ∖ ( 𝑋 ∖ { 𝑦 } ) ) = { 𝑦 } ) |
23 |
|
snfi |
⊢ { 𝑦 } ∈ Fin |
24 |
22 23
|
eqeltrdi |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → ( 𝑋 ∖ ( 𝑋 ∖ { 𝑦 } ) ) ∈ Fin ) |
25 |
|
difss |
⊢ ( 𝑋 ∖ { 𝑦 } ) ⊆ 𝑋 |
26 |
|
filtop |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) |
27 |
|
elpw2g |
⊢ ( 𝑋 ∈ 𝐹 → ( ( 𝑋 ∖ { 𝑦 } ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ { 𝑦 } ) ⊆ 𝑋 ) ) |
28 |
17 26 27
|
3syl |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → ( ( 𝑋 ∖ { 𝑦 } ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ { 𝑦 } ) ⊆ 𝑋 ) ) |
29 |
25 28
|
mpbiri |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → ( 𝑋 ∖ { 𝑦 } ) ∈ 𝒫 𝑋 ) |
30 |
|
difeq2 |
⊢ ( 𝑥 = ( 𝑋 ∖ { 𝑦 } ) → ( 𝑋 ∖ 𝑥 ) = ( 𝑋 ∖ ( 𝑋 ∖ { 𝑦 } ) ) ) |
31 |
30
|
eleq1d |
⊢ ( 𝑥 = ( 𝑋 ∖ { 𝑦 } ) → ( ( 𝑋 ∖ 𝑥 ) ∈ Fin ↔ ( 𝑋 ∖ ( 𝑋 ∖ { 𝑦 } ) ) ∈ Fin ) ) |
32 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑋 ∖ { 𝑦 } ) → ( 𝑥 ∈ 𝐹 ↔ ( 𝑋 ∖ { 𝑦 } ) ∈ 𝐹 ) ) |
33 |
31 32
|
imbi12d |
⊢ ( 𝑥 = ( 𝑋 ∖ { 𝑦 } ) → ( ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) ↔ ( ( 𝑋 ∖ ( 𝑋 ∖ { 𝑦 } ) ) ∈ Fin → ( 𝑋 ∖ { 𝑦 } ) ∈ 𝐹 ) ) ) |
34 |
33
|
rspcv |
⊢ ( ( 𝑋 ∖ { 𝑦 } ) ∈ 𝒫 𝑋 → ( ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) → ( ( 𝑋 ∖ ( 𝑋 ∖ { 𝑦 } ) ) ∈ Fin → ( 𝑋 ∖ { 𝑦 } ) ∈ 𝐹 ) ) ) |
35 |
29 34
|
syl |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → ( ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) → ( ( 𝑋 ∖ ( 𝑋 ∖ { 𝑦 } ) ) ∈ Fin → ( 𝑋 ∖ { 𝑦 } ) ∈ 𝐹 ) ) ) |
36 |
24 35
|
mpid |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → ( ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) → ( 𝑋 ∖ { 𝑦 } ) ∈ 𝐹 ) ) |
37 |
|
ufilb |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ { 𝑦 } ⊆ 𝑋 ) → ( ¬ { 𝑦 } ∈ 𝐹 ↔ ( 𝑋 ∖ { 𝑦 } ) ∈ 𝐹 ) ) |
38 |
20 37
|
syldan |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → ( ¬ { 𝑦 } ∈ 𝐹 ↔ ( 𝑋 ∖ { 𝑦 } ) ∈ 𝐹 ) ) |
39 |
18
|
pm2.24d |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → ( ¬ { 𝑦 } ∈ 𝐹 → ¬ 𝑦 ∈ ∩ 𝐹 ) ) |
40 |
38 39
|
sylbird |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → ( ( 𝑋 ∖ { 𝑦 } ) ∈ 𝐹 → ¬ 𝑦 ∈ ∩ 𝐹 ) ) |
41 |
36 40
|
syld |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑦 ∈ ∩ 𝐹 ) → ( ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) → ¬ 𝑦 ∈ ∩ 𝐹 ) ) |
42 |
41
|
impancom |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) ) → ( 𝑦 ∈ ∩ 𝐹 → ¬ 𝑦 ∈ ∩ 𝐹 ) ) |
43 |
42
|
pm2.01d |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) ) → ¬ 𝑦 ∈ ∩ 𝐹 ) |
44 |
43
|
eq0rdv |
⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) ) → ∩ 𝐹 = ∅ ) |
45 |
44
|
ex |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) → ∩ 𝐹 = ∅ ) ) |
46 |
16 45
|
impbid |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∩ 𝐹 = ∅ ↔ ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) ) ) |
47 |
|
rabss |
⊢ ( { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ Fin } ⊆ 𝐹 ↔ ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝑋 ∖ 𝑥 ) ∈ Fin → 𝑥 ∈ 𝐹 ) ) |
48 |
46 47
|
bitr4di |
⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ∩ 𝐹 = ∅ ↔ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ∈ Fin } ⊆ 𝐹 ) ) |