| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cfval |
⊢ ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 2 |
|
df-sn |
⊢ { ( card ‘ 𝐴 ) } = { 𝑥 ∣ 𝑥 = ( card ‘ 𝐴 ) } |
| 3 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
| 4 |
|
ssid |
⊢ 𝑧 ⊆ 𝑧 |
| 5 |
|
sseq2 |
⊢ ( 𝑤 = 𝑧 → ( 𝑧 ⊆ 𝑤 ↔ 𝑧 ⊆ 𝑧 ) ) |
| 6 |
5
|
rspcev |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑧 ⊆ 𝑧 ) → ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) |
| 7 |
4 6
|
mpan2 |
⊢ ( 𝑧 ∈ 𝐴 → ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) |
| 8 |
7
|
rgen |
⊢ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 |
| 9 |
3 8
|
pm3.2i |
⊢ ( 𝐴 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) |
| 10 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( card ‘ 𝑦 ) = ( card ‘ 𝐴 ) ) |
| 11 |
10
|
eqeq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 = ( card ‘ 𝑦 ) ↔ 𝑥 = ( card ‘ 𝐴 ) ) ) |
| 12 |
|
sseq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) |
| 13 |
|
rexeq |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) ) |
| 14 |
13
|
ralbidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) ) |
| 15 |
12 14
|
anbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ↔ ( 𝐴 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) ) ) |
| 16 |
11 15
|
anbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ↔ ( 𝑥 = ( card ‘ 𝐴 ) ∧ ( 𝐴 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) ) ) ) |
| 17 |
16
|
spcegv |
⊢ ( 𝐴 ∈ On → ( ( 𝑥 = ( card ‘ 𝐴 ) ∧ ( 𝐴 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) ) → ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) ) |
| 18 |
9 17
|
mpan2i |
⊢ ( 𝐴 ∈ On → ( 𝑥 = ( card ‘ 𝐴 ) → ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) ) |
| 19 |
18
|
ss2abdv |
⊢ ( 𝐴 ∈ On → { 𝑥 ∣ 𝑥 = ( card ‘ 𝐴 ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 20 |
2 19
|
eqsstrid |
⊢ ( 𝐴 ∈ On → { ( card ‘ 𝐴 ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 21 |
|
intss |
⊢ ( { ( card ‘ 𝐴 ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ⊆ ∩ { ( card ‘ 𝐴 ) } ) |
| 22 |
20 21
|
syl |
⊢ ( 𝐴 ∈ On → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ⊆ ∩ { ( card ‘ 𝐴 ) } ) |
| 23 |
|
fvex |
⊢ ( card ‘ 𝐴 ) ∈ V |
| 24 |
23
|
intsn |
⊢ ∩ { ( card ‘ 𝐴 ) } = ( card ‘ 𝐴 ) |
| 25 |
22 24
|
sseqtrdi |
⊢ ( 𝐴 ∈ On → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ⊆ ( card ‘ 𝐴 ) ) |
| 26 |
1 25
|
eqsstrd |
⊢ ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) ⊆ ( card ‘ 𝐴 ) ) |
| 27 |
|
cff |
⊢ cf : On ⟶ On |
| 28 |
27
|
fdmi |
⊢ dom cf = On |
| 29 |
28
|
eleq2i |
⊢ ( 𝐴 ∈ dom cf ↔ 𝐴 ∈ On ) |
| 30 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom cf → ( cf ‘ 𝐴 ) = ∅ ) |
| 31 |
29 30
|
sylnbir |
⊢ ( ¬ 𝐴 ∈ On → ( cf ‘ 𝐴 ) = ∅ ) |
| 32 |
|
0ss |
⊢ ∅ ⊆ ( card ‘ 𝐴 ) |
| 33 |
31 32
|
eqsstrdi |
⊢ ( ¬ 𝐴 ∈ On → ( cf ‘ 𝐴 ) ⊆ ( card ‘ 𝐴 ) ) |
| 34 |
26 33
|
pm2.61i |
⊢ ( cf ‘ 𝐴 ) ⊆ ( card ‘ 𝐴 ) |