Step |
Hyp |
Ref |
Expression |
1 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
2 |
|
ssid |
⊢ 𝑧 ⊆ 𝑧 |
3 |
|
sseq2 |
⊢ ( 𝑤 = 𝑧 → ( 𝑧 ⊆ 𝑤 ↔ 𝑧 ⊆ 𝑧 ) ) |
4 |
3
|
rspcev |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑧 ⊆ 𝑧 ) → ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) |
5 |
2 4
|
mpan2 |
⊢ ( 𝑧 ∈ 𝐴 → ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) |
6 |
5
|
rgen |
⊢ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 |
7 |
|
sseq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) |
8 |
|
rexeq |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) ) |
9 |
8
|
ralbidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) ) |
10 |
7 9
|
anbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ↔ ( 𝐴 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) ) ) |
11 |
10
|
spcegv |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) |
12 |
1 6 11
|
mp2ani |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) |
13 |
|
fvex |
⊢ ( card ‘ 𝑦 ) ∈ V |
14 |
13
|
isseti |
⊢ ∃ 𝑥 𝑥 = ( card ‘ 𝑦 ) |
15 |
|
19.41v |
⊢ ( ∃ 𝑥 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ↔ ( ∃ 𝑥 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) |
16 |
14 15
|
mpbiran |
⊢ ( ∃ 𝑥 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ↔ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) |
17 |
16
|
exbii |
⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ↔ ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) |
18 |
|
excom |
⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) |
19 |
17 18
|
bitr3i |
⊢ ( ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) |
20 |
12 19
|
sylib |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) |