Metamath Proof Explorer


Theorem cflem

Description: A lemma used to simplify cofinality computations, showing the existence of the cardinal of an unbounded subset of a set A . (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion cflem ( 𝐴𝑉 → ∃ 𝑥𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) )

Proof

Step Hyp Ref Expression
1 ssid 𝐴𝐴
2 ssid 𝑧𝑧
3 sseq2 ( 𝑤 = 𝑧 → ( 𝑧𝑤𝑧𝑧 ) )
4 3 rspcev ( ( 𝑧𝐴𝑧𝑧 ) → ∃ 𝑤𝐴 𝑧𝑤 )
5 2 4 mpan2 ( 𝑧𝐴 → ∃ 𝑤𝐴 𝑧𝑤 )
6 5 rgen 𝑧𝐴𝑤𝐴 𝑧𝑤
7 sseq1 ( 𝑦 = 𝐴 → ( 𝑦𝐴𝐴𝐴 ) )
8 rexeq ( 𝑦 = 𝐴 → ( ∃ 𝑤𝑦 𝑧𝑤 ↔ ∃ 𝑤𝐴 𝑧𝑤 ) )
9 8 ralbidv ( 𝑦 = 𝐴 → ( ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ↔ ∀ 𝑧𝐴𝑤𝐴 𝑧𝑤 ) )
10 7 9 anbi12d ( 𝑦 = 𝐴 → ( ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ↔ ( 𝐴𝐴 ∧ ∀ 𝑧𝐴𝑤𝐴 𝑧𝑤 ) ) )
11 10 spcegv ( 𝐴𝑉 → ( ( 𝐴𝐴 ∧ ∀ 𝑧𝐴𝑤𝐴 𝑧𝑤 ) → ∃ 𝑦 ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) )
12 1 6 11 mp2ani ( 𝐴𝑉 → ∃ 𝑦 ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) )
13 fvex ( card ‘ 𝑦 ) ∈ V
14 13 isseti 𝑥 𝑥 = ( card ‘ 𝑦 )
15 19.41v ( ∃ 𝑥 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) ↔ ( ∃ 𝑥 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) )
16 14 15 mpbiran ( ∃ 𝑥 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) ↔ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) )
17 16 exbii ( ∃ 𝑦𝑥 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) ↔ ∃ 𝑦 ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) )
18 excom ( ∃ 𝑦𝑥 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) ↔ ∃ 𝑥𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) )
19 17 18 bitr3i ( ∃ 𝑦 ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ↔ ∃ 𝑥𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) )
20 12 19 sylib ( 𝐴𝑉 → ∃ 𝑥𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) )