Metamath Proof Explorer


Theorem cflem

Description: A lemma used to simplify cofinality computations, showing the existence of the cardinal of an unbounded subset of a set A . (Contributed by NM, 24-Apr-2004) Avoid ax-11 . (Revised by BTernaryTau, 25-Jul-2025)

Ref Expression
Assertion cflem ( 𝐴𝑉 → ∃ 𝑥𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) )

Proof

Step Hyp Ref Expression
1 ssid 𝐴𝐴
2 ssid 𝑧𝑧
3 sseq2 ( 𝑤 = 𝑧 → ( 𝑧𝑤𝑧𝑧 ) )
4 3 rspcev ( ( 𝑧𝐴𝑧𝑧 ) → ∃ 𝑤𝐴 𝑧𝑤 )
5 2 4 mpan2 ( 𝑧𝐴 → ∃ 𝑤𝐴 𝑧𝑤 )
6 5 rgen 𝑧𝐴𝑤𝐴 𝑧𝑤
7 sseq1 ( 𝑦 = 𝐴 → ( 𝑦𝐴𝐴𝐴 ) )
8 rexeq ( 𝑦 = 𝐴 → ( ∃ 𝑤𝑦 𝑧𝑤 ↔ ∃ 𝑤𝐴 𝑧𝑤 ) )
9 8 ralbidv ( 𝑦 = 𝐴 → ( ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ↔ ∀ 𝑧𝐴𝑤𝐴 𝑧𝑤 ) )
10 7 9 anbi12d ( 𝑦 = 𝐴 → ( ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ↔ ( 𝐴𝐴 ∧ ∀ 𝑧𝐴𝑤𝐴 𝑧𝑤 ) ) )
11 10 spcegv ( 𝐴𝑉 → ( ( 𝐴𝐴 ∧ ∀ 𝑧𝐴𝑤𝐴 𝑧𝑤 ) → ∃ 𝑦 ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) )
12 1 6 11 mp2ani ( 𝐴𝑉 → ∃ 𝑦 ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) )
13 fvex ( card ‘ 𝑦 ) ∈ V
14 13 isseti 𝑥 𝑥 = ( card ‘ 𝑦 )
15 19.41v ( ∃ 𝑥 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) ↔ ( ∃ 𝑥 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) )
16 14 15 mpbiran ( ∃ 𝑥 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) ↔ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) )
17 16 exbii ( ∃ 𝑦𝑥 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) ↔ ∃ 𝑦 ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) )
18 fveq2 ( 𝑦 = 𝑣 → ( card ‘ 𝑦 ) = ( card ‘ 𝑣 ) )
19 18 eqeq2d ( 𝑦 = 𝑣 → ( 𝑥 = ( card ‘ 𝑦 ) ↔ 𝑥 = ( card ‘ 𝑣 ) ) )
20 sseq1 ( 𝑦 = 𝑣 → ( 𝑦𝐴𝑣𝐴 ) )
21 rexeq ( 𝑦 = 𝑣 → ( ∃ 𝑤𝑦 𝑧𝑤 ↔ ∃ 𝑤𝑣 𝑧𝑤 ) )
22 21 ralbidv ( 𝑦 = 𝑣 → ( ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ↔ ∀ 𝑧𝐴𝑤𝑣 𝑧𝑤 ) )
23 20 22 anbi12d ( 𝑦 = 𝑣 → ( ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ↔ ( 𝑣𝐴 ∧ ∀ 𝑧𝐴𝑤𝑣 𝑧𝑤 ) ) )
24 19 23 anbi12d ( 𝑦 = 𝑣 → ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) ↔ ( 𝑥 = ( card ‘ 𝑣 ) ∧ ( 𝑣𝐴 ∧ ∀ 𝑧𝐴𝑤𝑣 𝑧𝑤 ) ) ) )
25 24 excomimw ( ∃ 𝑦𝑥 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) → ∃ 𝑥𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) )
26 17 25 sylbir ( ∃ 𝑦 ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) → ∃ 𝑥𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) )
27 12 26 syl ( 𝐴𝑉 → ∃ 𝑥𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) )