Step |
Hyp |
Ref |
Expression |
1 |
|
cflim3.1 |
⊢ 𝐴 ∈ V |
2 |
|
limord |
⊢ ( Lim 𝐴 → Ord 𝐴 ) |
3 |
1
|
elon |
⊢ ( 𝐴 ∈ On ↔ Ord 𝐴 ) |
4 |
2 3
|
sylibr |
⊢ ( Lim 𝐴 → 𝐴 ∈ On ) |
5 |
|
cfval |
⊢ ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) = ∩ { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) } ) |
6 |
4 5
|
syl |
⊢ ( Lim 𝐴 → ( cf ‘ 𝐴 ) = ∩ { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) } ) |
7 |
|
fvex |
⊢ ( card ‘ 𝑥 ) ∈ V |
8 |
7
|
dfiin2 |
⊢ ∩ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝑥 ) = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } |
9 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ 𝑦 = ( card ‘ 𝑥 ) ) ) |
10 |
|
ancom |
⊢ ( ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ 𝑦 = ( card ‘ 𝑥 ) ) ↔ ( 𝑦 = ( card ‘ 𝑥 ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ) ) |
11 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ) |
12 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
13 |
12
|
anbi1i |
⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ) |
14 |
|
coflim |
⊢ ( ( Lim 𝐴 ∧ 𝑥 ⊆ 𝐴 ) → ( ∪ 𝑥 = 𝐴 ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) |
15 |
14
|
pm5.32da |
⊢ ( Lim 𝐴 → ( ( 𝑥 ⊆ 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) ) |
16 |
13 15
|
syl5bb |
⊢ ( Lim 𝐴 → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) ) |
17 |
11 16
|
syl5bb |
⊢ ( Lim 𝐴 → ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ↔ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) ) |
18 |
17
|
anbi2d |
⊢ ( Lim 𝐴 → ( ( 𝑦 = ( card ‘ 𝑥 ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ) ↔ ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) ) ) |
19 |
10 18
|
syl5bb |
⊢ ( Lim 𝐴 → ( ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ 𝑦 = ( card ‘ 𝑥 ) ) ↔ ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) ) ) |
20 |
19
|
exbidv |
⊢ ( Lim 𝐴 → ( ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ 𝑦 = ( card ‘ 𝑥 ) ) ↔ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) ) ) |
21 |
9 20
|
syl5bb |
⊢ ( Lim 𝐴 → ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) ) ) |
22 |
21
|
abbidv |
⊢ ( Lim 𝐴 → { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) } ) |
23 |
22
|
inteqd |
⊢ ( Lim 𝐴 → ∩ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } = ∩ { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) } ) |
24 |
8 23
|
eqtr2id |
⊢ ( Lim 𝐴 → ∩ { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) } = ∩ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝑥 ) ) |
25 |
6 24
|
eqtrd |
⊢ ( Lim 𝐴 → ( cf ‘ 𝐴 ) = ∩ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝑥 ) ) |