Metamath Proof Explorer


Theorem cflm

Description: Value of the cofinality function at a limit ordinal. Part of Definition of cofinality of Enderton p. 257. (Contributed by NM, 26-Apr-2004)

Ref Expression
Assertion cflm ( ( 𝐴𝐵 ∧ Lim 𝐴 ) → ( cf ‘ 𝐴 ) = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) } )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴𝐵𝐴 ∈ V )
2 limsuc ( Lim 𝐴 → ( 𝑣𝐴 ↔ suc 𝑣𝐴 ) )
3 2 biimpd ( Lim 𝐴 → ( 𝑣𝐴 → suc 𝑣𝐴 ) )
4 sseq1 ( 𝑧 = suc 𝑣 → ( 𝑧𝑤 ↔ suc 𝑣𝑤 ) )
5 4 rexbidv ( 𝑧 = suc 𝑣 → ( ∃ 𝑤𝑦 𝑧𝑤 ↔ ∃ 𝑤𝑦 suc 𝑣𝑤 ) )
6 5 rspcv ( suc 𝑣𝐴 → ( ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 → ∃ 𝑤𝑦 suc 𝑣𝑤 ) )
7 sucssel ( 𝑣 ∈ V → ( suc 𝑣𝑤𝑣𝑤 ) )
8 7 elv ( suc 𝑣𝑤𝑣𝑤 )
9 8 reximi ( ∃ 𝑤𝑦 suc 𝑣𝑤 → ∃ 𝑤𝑦 𝑣𝑤 )
10 eluni2 ( 𝑣 𝑦 ↔ ∃ 𝑤𝑦 𝑣𝑤 )
11 9 10 sylibr ( ∃ 𝑤𝑦 suc 𝑣𝑤𝑣 𝑦 )
12 6 11 syl6com ( ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 → ( suc 𝑣𝐴𝑣 𝑦 ) )
13 3 12 syl9 ( Lim 𝐴 → ( ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 → ( 𝑣𝐴𝑣 𝑦 ) ) )
14 13 ralrimdv ( Lim 𝐴 → ( ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 → ∀ 𝑣𝐴 𝑣 𝑦 ) )
15 dfss3 ( 𝐴 𝑦 ↔ ∀ 𝑣𝐴 𝑣 𝑦 )
16 14 15 syl6ibr ( Lim 𝐴 → ( ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤𝐴 𝑦 ) )
17 16 adantr ( ( Lim 𝐴𝑦𝐴 ) → ( ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤𝐴 𝑦 ) )
18 uniss ( 𝑦𝐴 𝑦 𝐴 )
19 limuni ( Lim 𝐴𝐴 = 𝐴 )
20 19 sseq2d ( Lim 𝐴 → ( 𝑦𝐴 𝑦 𝐴 ) )
21 18 20 syl5ibr ( Lim 𝐴 → ( 𝑦𝐴 𝑦𝐴 ) )
22 21 imp ( ( Lim 𝐴𝑦𝐴 ) → 𝑦𝐴 )
23 17 22 jctird ( ( Lim 𝐴𝑦𝐴 ) → ( ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 → ( 𝐴 𝑦 𝑦𝐴 ) ) )
24 eqss ( 𝐴 = 𝑦 ↔ ( 𝐴 𝑦 𝑦𝐴 ) )
25 23 24 syl6ibr ( ( Lim 𝐴𝑦𝐴 ) → ( ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤𝐴 = 𝑦 ) )
26 25 imdistanda ( Lim 𝐴 → ( ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) → ( 𝑦𝐴𝐴 = 𝑦 ) ) )
27 26 anim2d ( Lim 𝐴 → ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) → ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) ) )
28 27 eximdv ( Lim 𝐴 → ( ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) → ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) ) )
29 28 ss2abdv ( Lim 𝐴 → { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) } )
30 intss ( { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) } → { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) } )
31 29 30 syl ( Lim 𝐴 { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) } )
32 31 adantl ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) } )
33 limelon ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → 𝐴 ∈ On )
34 cfval ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) } )
35 33 34 syl ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( cf ‘ 𝐴 ) = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) } )
36 32 35 sseqtrrd ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) } ⊆ ( cf ‘ 𝐴 ) )
37 cfub ( cf ‘ 𝐴 ) ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 𝑦 ) ) }
38 eqimss ( 𝐴 = 𝑦𝐴 𝑦 )
39 38 anim2i ( ( 𝑦𝐴𝐴 = 𝑦 ) → ( 𝑦𝐴𝐴 𝑦 ) )
40 39 anim2i ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) → ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 𝑦 ) ) )
41 40 eximi ( ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) → ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 𝑦 ) ) )
42 41 ss2abi { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 𝑦 ) ) }
43 intss ( { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 𝑦 ) ) } → { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 𝑦 ) ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) } )
44 42 43 ax-mp { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 𝑦 ) ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) }
45 37 44 sstri ( cf ‘ 𝐴 ) ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) }
46 36 45 jctil ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ( cf ‘ 𝐴 ) ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) } ∧ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) } ⊆ ( cf ‘ 𝐴 ) ) )
47 eqss ( ( cf ‘ 𝐴 ) = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) } ↔ ( ( cf ‘ 𝐴 ) ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) } ∧ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) } ⊆ ( cf ‘ 𝐴 ) ) )
48 46 47 sylibr ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( cf ‘ 𝐴 ) = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) } )
49 1 48 sylan ( ( 𝐴𝐵 ∧ Lim 𝐴 ) → ( cf ‘ 𝐴 ) = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴𝐴 = 𝑦 ) ) } )