| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ V ) |
| 2 |
|
limsuc |
⊢ ( Lim 𝐴 → ( 𝑣 ∈ 𝐴 ↔ suc 𝑣 ∈ 𝐴 ) ) |
| 3 |
2
|
biimpd |
⊢ ( Lim 𝐴 → ( 𝑣 ∈ 𝐴 → suc 𝑣 ∈ 𝐴 ) ) |
| 4 |
|
sseq1 |
⊢ ( 𝑧 = suc 𝑣 → ( 𝑧 ⊆ 𝑤 ↔ suc 𝑣 ⊆ 𝑤 ) ) |
| 5 |
4
|
rexbidv |
⊢ ( 𝑧 = suc 𝑣 → ( ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∃ 𝑤 ∈ 𝑦 suc 𝑣 ⊆ 𝑤 ) ) |
| 6 |
5
|
rspcv |
⊢ ( suc 𝑣 ∈ 𝐴 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → ∃ 𝑤 ∈ 𝑦 suc 𝑣 ⊆ 𝑤 ) ) |
| 7 |
|
sucssel |
⊢ ( 𝑣 ∈ V → ( suc 𝑣 ⊆ 𝑤 → 𝑣 ∈ 𝑤 ) ) |
| 8 |
7
|
elv |
⊢ ( suc 𝑣 ⊆ 𝑤 → 𝑣 ∈ 𝑤 ) |
| 9 |
8
|
reximi |
⊢ ( ∃ 𝑤 ∈ 𝑦 suc 𝑣 ⊆ 𝑤 → ∃ 𝑤 ∈ 𝑦 𝑣 ∈ 𝑤 ) |
| 10 |
|
eluni2 |
⊢ ( 𝑣 ∈ ∪ 𝑦 ↔ ∃ 𝑤 ∈ 𝑦 𝑣 ∈ 𝑤 ) |
| 11 |
9 10
|
sylibr |
⊢ ( ∃ 𝑤 ∈ 𝑦 suc 𝑣 ⊆ 𝑤 → 𝑣 ∈ ∪ 𝑦 ) |
| 12 |
6 11
|
syl6com |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → ( suc 𝑣 ∈ 𝐴 → 𝑣 ∈ ∪ 𝑦 ) ) |
| 13 |
3 12
|
syl9 |
⊢ ( Lim 𝐴 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → ( 𝑣 ∈ 𝐴 → 𝑣 ∈ ∪ 𝑦 ) ) ) |
| 14 |
13
|
ralrimdv |
⊢ ( Lim 𝐴 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → ∀ 𝑣 ∈ 𝐴 𝑣 ∈ ∪ 𝑦 ) ) |
| 15 |
|
dfss3 |
⊢ ( 𝐴 ⊆ ∪ 𝑦 ↔ ∀ 𝑣 ∈ 𝐴 𝑣 ∈ ∪ 𝑦 ) |
| 16 |
14 15
|
imbitrrdi |
⊢ ( Lim 𝐴 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → 𝐴 ⊆ ∪ 𝑦 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → 𝐴 ⊆ ∪ 𝑦 ) ) |
| 18 |
|
uniss |
⊢ ( 𝑦 ⊆ 𝐴 → ∪ 𝑦 ⊆ ∪ 𝐴 ) |
| 19 |
|
limuni |
⊢ ( Lim 𝐴 → 𝐴 = ∪ 𝐴 ) |
| 20 |
19
|
sseq2d |
⊢ ( Lim 𝐴 → ( ∪ 𝑦 ⊆ 𝐴 ↔ ∪ 𝑦 ⊆ ∪ 𝐴 ) ) |
| 21 |
18 20
|
imbitrrid |
⊢ ( Lim 𝐴 → ( 𝑦 ⊆ 𝐴 → ∪ 𝑦 ⊆ 𝐴 ) ) |
| 22 |
21
|
imp |
⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ) → ∪ 𝑦 ⊆ 𝐴 ) |
| 23 |
17 22
|
jctird |
⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → ( 𝐴 ⊆ ∪ 𝑦 ∧ ∪ 𝑦 ⊆ 𝐴 ) ) ) |
| 24 |
|
eqss |
⊢ ( 𝐴 = ∪ 𝑦 ↔ ( 𝐴 ⊆ ∪ 𝑦 ∧ ∪ 𝑦 ⊆ 𝐴 ) ) |
| 25 |
23 24
|
imbitrrdi |
⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → 𝐴 = ∪ 𝑦 ) ) |
| 26 |
25
|
imdistanda |
⊢ ( Lim 𝐴 → ( ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) → ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ) |
| 27 |
26
|
anim2d |
⊢ ( Lim 𝐴 → ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) → ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ) ) |
| 28 |
27
|
eximdv |
⊢ ( Lim 𝐴 → ( ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) → ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ) ) |
| 29 |
28
|
ss2abdv |
⊢ ( Lim 𝐴 → { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ) |
| 30 |
|
intss |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ⊆ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 31 |
29 30
|
syl |
⊢ ( Lim 𝐴 → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ⊆ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 32 |
31
|
adantl |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ⊆ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 33 |
|
limelon |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → 𝐴 ∈ On ) |
| 34 |
|
cfval |
⊢ ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 35 |
33 34
|
syl |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( cf ‘ 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 36 |
32 35
|
sseqtrrd |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ⊆ ( cf ‘ 𝐴 ) ) |
| 37 |
|
cfub |
⊢ ( cf ‘ 𝐴 ) ⊆ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦 ) ) } |
| 38 |
|
eqimss |
⊢ ( 𝐴 = ∪ 𝑦 → 𝐴 ⊆ ∪ 𝑦 ) |
| 39 |
38
|
anim2i |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) → ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦 ) ) |
| 40 |
39
|
anim2i |
⊢ ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) → ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦 ) ) ) |
| 41 |
40
|
eximi |
⊢ ( ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) → ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦 ) ) ) |
| 42 |
41
|
ss2abi |
⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦 ) ) } |
| 43 |
|
intss |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦 ) ) } → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦 ) ) } ⊆ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ) |
| 44 |
42 43
|
ax-mp |
⊢ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦 ) ) } ⊆ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } |
| 45 |
37 44
|
sstri |
⊢ ( cf ‘ 𝐴 ) ⊆ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } |
| 46 |
36 45
|
jctil |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ( cf ‘ 𝐴 ) ⊆ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ∧ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ⊆ ( cf ‘ 𝐴 ) ) ) |
| 47 |
|
eqss |
⊢ ( ( cf ‘ 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ↔ ( ( cf ‘ 𝐴 ) ⊆ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ∧ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ⊆ ( cf ‘ 𝐴 ) ) ) |
| 48 |
46 47
|
sylibr |
⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( cf ‘ 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ) |
| 49 |
1 48
|
sylan |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ Lim 𝐴 ) → ( cf ‘ 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ) |