Step |
Hyp |
Ref |
Expression |
1 |
|
cfpwsdom.1 |
⊢ 𝐵 ∈ V |
2 |
|
ovex |
⊢ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ∈ V |
3 |
2
|
cardid |
⊢ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≈ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) |
4 |
3
|
ensymi |
⊢ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≈ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
5 |
|
fvex |
⊢ ( ℵ ‘ 𝐴 ) ∈ V |
6 |
5
|
canth2 |
⊢ ( ℵ ‘ 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) |
7 |
5
|
pw2en |
⊢ 𝒫 ( ℵ ‘ 𝐴 ) ≈ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) |
8 |
|
sdomentr |
⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ 𝒫 ( ℵ ‘ 𝐴 ) ∧ 𝒫 ( ℵ ‘ 𝐴 ) ≈ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ) |
9 |
6 7 8
|
mp2an |
⊢ ( ℵ ‘ 𝐴 ) ≺ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) |
10 |
|
mapdom1 |
⊢ ( 2o ≼ 𝐵 → ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
11 |
|
sdomdomtr |
⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ∧ ( 2o ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ℵ ‘ 𝐴 ) ≺ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
12 |
9 10 11
|
sylancr |
⊢ ( 2o ≼ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
13 |
|
ficard |
⊢ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ∈ V → ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ∈ Fin ↔ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ) ) |
14 |
2 13
|
ax-mp |
⊢ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ∈ Fin ↔ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ) |
15 |
|
fict |
⊢ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ∈ Fin → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≼ ω ) |
16 |
14 15
|
sylbir |
⊢ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≼ ω ) |
17 |
|
alephgeom |
⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) |
18 |
|
alephon |
⊢ ( ℵ ‘ 𝐴 ) ∈ On |
19 |
|
ssdomg |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ( ω ⊆ ( ℵ ‘ 𝐴 ) → ω ≼ ( ℵ ‘ 𝐴 ) ) ) |
20 |
18 19
|
ax-mp |
⊢ ( ω ⊆ ( ℵ ‘ 𝐴 ) → ω ≼ ( ℵ ‘ 𝐴 ) ) |
21 |
17 20
|
sylbi |
⊢ ( 𝐴 ∈ On → ω ≼ ( ℵ ‘ 𝐴 ) ) |
22 |
|
domtr |
⊢ ( ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≼ ω ∧ ω ≼ ( ℵ ‘ 𝐴 ) ) → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( ℵ ‘ 𝐴 ) ) |
23 |
16 21 22
|
syl2an |
⊢ ( ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ∧ 𝐴 ∈ On ) → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( ℵ ‘ 𝐴 ) ) |
24 |
|
domnsym |
⊢ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≼ ( ℵ ‘ 𝐴 ) → ¬ ( ℵ ‘ 𝐴 ) ≺ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
25 |
23 24
|
syl |
⊢ ( ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ∧ 𝐴 ∈ On ) → ¬ ( ℵ ‘ 𝐴 ) ≺ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
26 |
25
|
expcom |
⊢ ( 𝐴 ∈ On → ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω → ¬ ( ℵ ‘ 𝐴 ) ≺ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) |
27 |
26
|
con2d |
⊢ ( 𝐴 ∈ On → ( ( ℵ ‘ 𝐴 ) ≺ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) → ¬ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ) ) |
28 |
|
cardidm |
⊢ ( card ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
29 |
|
iscard3 |
⊢ ( ( card ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↔ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ( ω ∪ ran ℵ ) ) |
30 |
|
elun |
⊢ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ( ω ∪ ran ℵ ) ↔ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ∨ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ) ) |
31 |
|
df-or |
⊢ ( ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω ∨ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ) ↔ ( ¬ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ) ) |
32 |
29 30 31
|
3bitri |
⊢ ( ( card ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↔ ( ¬ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ) ) |
33 |
28 32
|
mpbi |
⊢ ( ¬ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ω → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ) |
34 |
12 27 33
|
syl56 |
⊢ ( 𝐴 ∈ On → ( 2o ≼ 𝐵 → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ) ) |
35 |
|
alephfnon |
⊢ ℵ Fn On |
36 |
|
fvelrnb |
⊢ ( ℵ Fn On → ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ↔ ∃ 𝑥 ∈ On ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |
37 |
35 36
|
ax-mp |
⊢ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∈ ran ℵ ↔ ∃ 𝑥 ∈ On ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) |
38 |
34 37
|
syl6ib |
⊢ ( 𝐴 ∈ On → ( 2o ≼ 𝐵 → ∃ 𝑥 ∈ On ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |
39 |
|
eqid |
⊢ ( 𝑦 ∈ ( cf ‘ ( ℵ ‘ 𝑥 ) ) ↦ ( har ‘ ( 𝑧 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( cf ‘ ( ℵ ‘ 𝑥 ) ) ↦ ( har ‘ ( 𝑧 ‘ 𝑦 ) ) ) |
40 |
39
|
pwcfsdom |
⊢ ( ℵ ‘ 𝑥 ) ≺ ( ( ℵ ‘ 𝑥 ) ↑m ( cf ‘ ( ℵ ‘ 𝑥 ) ) ) |
41 |
|
id |
⊢ ( ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) |
42 |
|
fveq2 |
⊢ ( ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( cf ‘ ( ℵ ‘ 𝑥 ) ) = ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |
43 |
41 42
|
oveq12d |
⊢ ( ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ( ℵ ‘ 𝑥 ) ↑m ( cf ‘ ( ℵ ‘ 𝑥 ) ) ) = ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
44 |
41 43
|
breq12d |
⊢ ( ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( ( ℵ ‘ 𝑥 ) ≺ ( ( ℵ ‘ 𝑥 ) ↑m ( cf ‘ ( ℵ ‘ 𝑥 ) ) ) ↔ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) |
45 |
40 44
|
mpbii |
⊢ ( ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
46 |
45
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ On ( ℵ ‘ 𝑥 ) = ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
47 |
38 46
|
syl6 |
⊢ ( 𝐴 ∈ On → ( 2o ≼ 𝐵 → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) |
48 |
47
|
imp |
⊢ ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
49 |
|
ensdomtr |
⊢ ( ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≈ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ∧ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
50 |
4 48 49
|
sylancr |
⊢ ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
51 |
|
fvex |
⊢ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ∈ V |
52 |
51
|
enref |
⊢ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≈ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) |
53 |
|
mapen |
⊢ ( ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ≈ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ∧ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≈ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) → ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≈ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
54 |
3 52 53
|
mp2an |
⊢ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≈ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |
55 |
|
mapxpen |
⊢ ( ( 𝐵 ∈ V ∧ ( ℵ ‘ 𝐴 ) ∈ On ∧ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ∈ V ) → ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≈ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) |
56 |
1 18 51 55
|
mp3an |
⊢ ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≈ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
57 |
54 56
|
entri |
⊢ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≈ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
58 |
|
sdomentr |
⊢ ( ( ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ∧ ( ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ↑m ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≈ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) |
59 |
50 57 58
|
sylancl |
⊢ ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) |
60 |
5
|
xpdom2 |
⊢ ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≼ ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ) |
61 |
17
|
biimpi |
⊢ ( 𝐴 ∈ On → ω ⊆ ( ℵ ‘ 𝐴 ) ) |
62 |
|
infxpen |
⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ On ∧ ω ⊆ ( ℵ ‘ 𝐴 ) ) → ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ≈ ( ℵ ‘ 𝐴 ) ) |
63 |
18 61 62
|
sylancr |
⊢ ( 𝐴 ∈ On → ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ≈ ( ℵ ‘ 𝐴 ) ) |
64 |
|
domentr |
⊢ ( ( ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≼ ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ∧ ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐴 ) ) ≈ ( ℵ ‘ 𝐴 ) ) → ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ) |
65 |
60 63 64
|
syl2an |
⊢ ( ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ∧ 𝐴 ∈ On ) → ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ) |
66 |
|
nsuceq0 |
⊢ suc 1o ≠ ∅ |
67 |
|
dom0 |
⊢ ( suc 1o ≼ ∅ ↔ suc 1o = ∅ ) |
68 |
66 67
|
nemtbir |
⊢ ¬ suc 1o ≼ ∅ |
69 |
|
df-2o |
⊢ 2o = suc 1o |
70 |
69
|
breq1i |
⊢ ( 2o ≼ 𝐵 ↔ suc 1o ≼ 𝐵 ) |
71 |
|
breq2 |
⊢ ( 𝐵 = ∅ → ( suc 1o ≼ 𝐵 ↔ suc 1o ≼ ∅ ) ) |
72 |
70 71
|
syl5bb |
⊢ ( 𝐵 = ∅ → ( 2o ≼ 𝐵 ↔ suc 1o ≼ ∅ ) ) |
73 |
72
|
biimpcd |
⊢ ( 2o ≼ 𝐵 → ( 𝐵 = ∅ → suc 1o ≼ ∅ ) ) |
74 |
73
|
adantld |
⊢ ( 2o ≼ 𝐵 → ( ( ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) = ∅ ∧ 𝐵 = ∅ ) → suc 1o ≼ ∅ ) ) |
75 |
68 74
|
mtoi |
⊢ ( 2o ≼ 𝐵 → ¬ ( ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) = ∅ ∧ 𝐵 = ∅ ) ) |
76 |
|
mapdom2 |
⊢ ( ( ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ∧ ¬ ( ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) = ∅ ∧ 𝐵 = ∅ ) ) → ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ≼ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
77 |
65 75 76
|
syl2an |
⊢ ( ( ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ∧ 𝐴 ∈ On ) ∧ 2o ≼ 𝐵 ) → ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ≼ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) |
78 |
|
domnsym |
⊢ ( ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ≼ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) → ¬ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) |
79 |
77 78
|
syl |
⊢ ( ( ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ∧ 𝐴 ∈ On ) ∧ 2o ≼ 𝐵 ) → ¬ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) |
80 |
79
|
expl |
⊢ ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) → ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ¬ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) ) |
81 |
80
|
com12 |
⊢ ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) → ¬ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ≺ ( 𝐵 ↑m ( ( ℵ ‘ 𝐴 ) × ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) ) |
82 |
59 81
|
mt2d |
⊢ ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ¬ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ) |
83 |
|
domtri |
⊢ ( ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ∈ V ∧ ( ℵ ‘ 𝐴 ) ∈ V ) → ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ↔ ¬ ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
84 |
51 5 83
|
mp2an |
⊢ ( ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ↔ ¬ ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |
85 |
84
|
biimpri |
⊢ ( ¬ ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) → ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ≼ ( ℵ ‘ 𝐴 ) ) |
86 |
82 85
|
nsyl2 |
⊢ ( ( 𝐴 ∈ On ∧ 2o ≼ 𝐵 ) → ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |
87 |
86
|
ex |
⊢ ( 𝐴 ∈ On → ( 2o ≼ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
88 |
|
fndm |
⊢ ( ℵ Fn On → dom ℵ = On ) |
89 |
35 88
|
ax-mp |
⊢ dom ℵ = On |
90 |
89
|
eleq2i |
⊢ ( 𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On ) |
91 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom ℵ → ( ℵ ‘ 𝐴 ) = ∅ ) |
92 |
90 91
|
sylnbir |
⊢ ( ¬ 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) = ∅ ) |
93 |
|
1n0 |
⊢ 1o ≠ ∅ |
94 |
|
1oex |
⊢ 1o ∈ V |
95 |
94
|
0sdom |
⊢ ( ∅ ≺ 1o ↔ 1o ≠ ∅ ) |
96 |
93 95
|
mpbir |
⊢ ∅ ≺ 1o |
97 |
|
id |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ℵ ‘ 𝐴 ) = ∅ ) |
98 |
|
oveq2 |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) = ( 𝐵 ↑m ∅ ) ) |
99 |
|
map0e |
⊢ ( 𝐵 ∈ V → ( 𝐵 ↑m ∅ ) = 1o ) |
100 |
1 99
|
ax-mp |
⊢ ( 𝐵 ↑m ∅ ) = 1o |
101 |
98 100
|
eqtrdi |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) = 1o ) |
102 |
101
|
fveq2d |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) = ( card ‘ 1o ) ) |
103 |
|
1onn |
⊢ 1o ∈ ω |
104 |
|
cardnn |
⊢ ( 1o ∈ ω → ( card ‘ 1o ) = 1o ) |
105 |
103 104
|
ax-mp |
⊢ ( card ‘ 1o ) = 1o |
106 |
102 105
|
eqtrdi |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) = 1o ) |
107 |
106
|
fveq2d |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) = ( cf ‘ 1o ) ) |
108 |
|
df-1o |
⊢ 1o = suc ∅ |
109 |
108
|
fveq2i |
⊢ ( cf ‘ 1o ) = ( cf ‘ suc ∅ ) |
110 |
|
0elon |
⊢ ∅ ∈ On |
111 |
|
cfsuc |
⊢ ( ∅ ∈ On → ( cf ‘ suc ∅ ) = 1o ) |
112 |
110 111
|
ax-mp |
⊢ ( cf ‘ suc ∅ ) = 1o |
113 |
109 112
|
eqtri |
⊢ ( cf ‘ 1o ) = 1o |
114 |
107 113
|
eqtrdi |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) = 1o ) |
115 |
97 114
|
breq12d |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ↔ ∅ ≺ 1o ) ) |
116 |
96 115
|
mpbiri |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |
117 |
116
|
a1d |
⊢ ( ( ℵ ‘ 𝐴 ) = ∅ → ( 2o ≼ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
118 |
92 117
|
syl |
⊢ ( ¬ 𝐴 ∈ On → ( 2o ≼ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) ) |
119 |
87 118
|
pm2.61i |
⊢ ( 2o ≼ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( cf ‘ ( card ‘ ( 𝐵 ↑m ( ℵ ‘ 𝐴 ) ) ) ) ) |