| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cfpwsdom.1 | ⊢ 𝐵  ∈  V | 
						
							| 2 |  | ovex | ⊢ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ∈  V | 
						
							| 3 | 2 | cardid | ⊢ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ≈  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) | 
						
							| 4 | 3 | ensymi | ⊢ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ≈  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 5 |  | fvex | ⊢ ( ℵ ‘ 𝐴 )  ∈  V | 
						
							| 6 | 5 | canth2 | ⊢ ( ℵ ‘ 𝐴 )  ≺  𝒫  ( ℵ ‘ 𝐴 ) | 
						
							| 7 | 5 | pw2en | ⊢ 𝒫  ( ℵ ‘ 𝐴 )  ≈  ( 2o  ↑m  ( ℵ ‘ 𝐴 ) ) | 
						
							| 8 |  | sdomentr | ⊢ ( ( ( ℵ ‘ 𝐴 )  ≺  𝒫  ( ℵ ‘ 𝐴 )  ∧  𝒫  ( ℵ ‘ 𝐴 )  ≈  ( 2o  ↑m  ( ℵ ‘ 𝐴 ) ) )  →  ( ℵ ‘ 𝐴 )  ≺  ( 2o  ↑m  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 9 | 6 7 8 | mp2an | ⊢ ( ℵ ‘ 𝐴 )  ≺  ( 2o  ↑m  ( ℵ ‘ 𝐴 ) ) | 
						
							| 10 |  | mapdom1 | ⊢ ( 2o  ≼  𝐵  →  ( 2o  ↑m  ( ℵ ‘ 𝐴 ) )  ≼  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 11 |  | sdomdomtr | ⊢ ( ( ( ℵ ‘ 𝐴 )  ≺  ( 2o  ↑m  ( ℵ ‘ 𝐴 ) )  ∧  ( 2o  ↑m  ( ℵ ‘ 𝐴 ) )  ≼  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  →  ( ℵ ‘ 𝐴 )  ≺  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 12 | 9 10 11 | sylancr | ⊢ ( 2o  ≼  𝐵  →  ( ℵ ‘ 𝐴 )  ≺  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 13 |  | ficard | ⊢ ( ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ∈  V  →  ( ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ∈  Fin  ↔  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ω ) ) | 
						
							| 14 | 2 13 | ax-mp | ⊢ ( ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ∈  Fin  ↔  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ω ) | 
						
							| 15 |  | fict | ⊢ ( ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ∈  Fin  →  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ≼  ω ) | 
						
							| 16 | 14 15 | sylbir | ⊢ ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ω  →  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ≼  ω ) | 
						
							| 17 |  | alephgeom | ⊢ ( 𝐴  ∈  On  ↔  ω  ⊆  ( ℵ ‘ 𝐴 ) ) | 
						
							| 18 |  | alephon | ⊢ ( ℵ ‘ 𝐴 )  ∈  On | 
						
							| 19 |  | ssdomg | ⊢ ( ( ℵ ‘ 𝐴 )  ∈  On  →  ( ω  ⊆  ( ℵ ‘ 𝐴 )  →  ω  ≼  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 20 | 18 19 | ax-mp | ⊢ ( ω  ⊆  ( ℵ ‘ 𝐴 )  →  ω  ≼  ( ℵ ‘ 𝐴 ) ) | 
						
							| 21 | 17 20 | sylbi | ⊢ ( 𝐴  ∈  On  →  ω  ≼  ( ℵ ‘ 𝐴 ) ) | 
						
							| 22 |  | domtr | ⊢ ( ( ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ≼  ω  ∧  ω  ≼  ( ℵ ‘ 𝐴 ) )  →  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ≼  ( ℵ ‘ 𝐴 ) ) | 
						
							| 23 | 16 21 22 | syl2an | ⊢ ( ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ω  ∧  𝐴  ∈  On )  →  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ≼  ( ℵ ‘ 𝐴 ) ) | 
						
							| 24 |  | domnsym | ⊢ ( ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ≼  ( ℵ ‘ 𝐴 )  →  ¬  ( ℵ ‘ 𝐴 )  ≺  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 25 | 23 24 | syl | ⊢ ( ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ω  ∧  𝐴  ∈  On )  →  ¬  ( ℵ ‘ 𝐴 )  ≺  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 26 | 25 | expcom | ⊢ ( 𝐴  ∈  On  →  ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ω  →  ¬  ( ℵ ‘ 𝐴 )  ≺  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) | 
						
							| 27 | 26 | con2d | ⊢ ( 𝐴  ∈  On  →  ( ( ℵ ‘ 𝐴 )  ≺  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  →  ¬  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ω ) ) | 
						
							| 28 |  | cardidm | ⊢ ( card ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  =  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 29 |  | iscard3 | ⊢ ( ( card ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  =  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ↔  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ( ω  ∪  ran  ℵ ) ) | 
						
							| 30 |  | elun | ⊢ ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ( ω  ∪  ran  ℵ )  ↔  ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ω  ∨  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ran  ℵ ) ) | 
						
							| 31 |  | df-or | ⊢ ( ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ω  ∨  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ran  ℵ )  ↔  ( ¬  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ω  →  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ran  ℵ ) ) | 
						
							| 32 | 29 30 31 | 3bitri | ⊢ ( ( card ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  =  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ↔  ( ¬  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ω  →  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ran  ℵ ) ) | 
						
							| 33 | 28 32 | mpbi | ⊢ ( ¬  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ω  →  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ran  ℵ ) | 
						
							| 34 | 12 27 33 | syl56 | ⊢ ( 𝐴  ∈  On  →  ( 2o  ≼  𝐵  →  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ran  ℵ ) ) | 
						
							| 35 |  | alephfnon | ⊢ ℵ  Fn  On | 
						
							| 36 |  | fvelrnb | ⊢ ( ℵ  Fn  On  →  ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ran  ℵ  ↔  ∃ 𝑥  ∈  On ( ℵ ‘ 𝑥 )  =  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) | 
						
							| 37 | 35 36 | ax-mp | ⊢ ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∈  ran  ℵ  ↔  ∃ 𝑥  ∈  On ( ℵ ‘ 𝑥 )  =  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) | 
						
							| 38 | 34 37 | imbitrdi | ⊢ ( 𝐴  ∈  On  →  ( 2o  ≼  𝐵  →  ∃ 𝑥  ∈  On ( ℵ ‘ 𝑥 )  =  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) | 
						
							| 39 |  | eqid | ⊢ ( 𝑦  ∈  ( cf ‘ ( ℵ ‘ 𝑥 ) )  ↦  ( har ‘ ( 𝑧 ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  ( cf ‘ ( ℵ ‘ 𝑥 ) )  ↦  ( har ‘ ( 𝑧 ‘ 𝑦 ) ) ) | 
						
							| 40 | 39 | pwcfsdom | ⊢ ( ℵ ‘ 𝑥 )  ≺  ( ( ℵ ‘ 𝑥 )  ↑m  ( cf ‘ ( ℵ ‘ 𝑥 ) ) ) | 
						
							| 41 |  | id | ⊢ ( ( ℵ ‘ 𝑥 )  =  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  →  ( ℵ ‘ 𝑥 )  =  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) | 
						
							| 42 |  | fveq2 | ⊢ ( ( ℵ ‘ 𝑥 )  =  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  →  ( cf ‘ ( ℵ ‘ 𝑥 ) )  =  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) | 
						
							| 43 | 41 42 | oveq12d | ⊢ ( ( ℵ ‘ 𝑥 )  =  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  →  ( ( ℵ ‘ 𝑥 )  ↑m  ( cf ‘ ( ℵ ‘ 𝑥 ) ) )  =  ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ↑m  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 44 | 41 43 | breq12d | ⊢ ( ( ℵ ‘ 𝑥 )  =  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  →  ( ( ℵ ‘ 𝑥 )  ≺  ( ( ℵ ‘ 𝑥 )  ↑m  ( cf ‘ ( ℵ ‘ 𝑥 ) ) )  ↔  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ≺  ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ↑m  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) | 
						
							| 45 | 40 44 | mpbii | ⊢ ( ( ℵ ‘ 𝑥 )  =  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  →  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ≺  ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ↑m  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 46 | 45 | rexlimivw | ⊢ ( ∃ 𝑥  ∈  On ( ℵ ‘ 𝑥 )  =  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  →  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ≺  ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ↑m  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 47 | 38 46 | syl6 | ⊢ ( 𝐴  ∈  On  →  ( 2o  ≼  𝐵  →  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ≺  ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ↑m  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) | 
						
							| 48 | 47 | imp | ⊢ ( ( 𝐴  ∈  On  ∧  2o  ≼  𝐵 )  →  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ≺  ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ↑m  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 49 |  | ensdomtr | ⊢ ( ( ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ≈  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ∧  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ≺  ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ↑m  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) )  →  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ≺  ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ↑m  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 50 | 4 48 49 | sylancr | ⊢ ( ( 𝐴  ∈  On  ∧  2o  ≼  𝐵 )  →  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ≺  ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ↑m  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 51 |  | fvex | ⊢ ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  ∈  V | 
						
							| 52 | 51 | enref | ⊢ ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  ≈  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) | 
						
							| 53 |  | mapen | ⊢ ( ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ≈  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ∧  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  ≈  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) )  →  ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ↑m  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) )  ≈  ( ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ↑m  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 54 | 3 52 53 | mp2an | ⊢ ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ↑m  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) )  ≈  ( ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ↑m  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) | 
						
							| 55 |  | mapxpen | ⊢ ( ( 𝐵  ∈  V  ∧  ( ℵ ‘ 𝐴 )  ∈  On  ∧  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  ∈  V )  →  ( ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ↑m  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) )  ≈  ( 𝐵  ↑m  ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) | 
						
							| 56 | 1 18 51 55 | mp3an | ⊢ ( ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ↑m  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) )  ≈  ( 𝐵  ↑m  ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 57 | 54 56 | entri | ⊢ ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ↑m  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) )  ≈  ( 𝐵  ↑m  ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 58 |  | sdomentr | ⊢ ( ( ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ≺  ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ↑m  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) )  ∧  ( ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  ↑m  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) )  ≈  ( 𝐵  ↑m  ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) )  →  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ≺  ( 𝐵  ↑m  ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) | 
						
							| 59 | 50 57 58 | sylancl | ⊢ ( ( 𝐴  ∈  On  ∧  2o  ≼  𝐵 )  →  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ≺  ( 𝐵  ↑m  ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) | 
						
							| 60 | 5 | xpdom2 | ⊢ ( ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  ≼  ( ℵ ‘ 𝐴 )  →  ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) )  ≼  ( ( ℵ ‘ 𝐴 )  ×  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 61 | 17 | biimpi | ⊢ ( 𝐴  ∈  On  →  ω  ⊆  ( ℵ ‘ 𝐴 ) ) | 
						
							| 62 |  | infxpen | ⊢ ( ( ( ℵ ‘ 𝐴 )  ∈  On  ∧  ω  ⊆  ( ℵ ‘ 𝐴 ) )  →  ( ( ℵ ‘ 𝐴 )  ×  ( ℵ ‘ 𝐴 ) )  ≈  ( ℵ ‘ 𝐴 ) ) | 
						
							| 63 | 18 61 62 | sylancr | ⊢ ( 𝐴  ∈  On  →  ( ( ℵ ‘ 𝐴 )  ×  ( ℵ ‘ 𝐴 ) )  ≈  ( ℵ ‘ 𝐴 ) ) | 
						
							| 64 |  | domentr | ⊢ ( ( ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) )  ≼  ( ( ℵ ‘ 𝐴 )  ×  ( ℵ ‘ 𝐴 ) )  ∧  ( ( ℵ ‘ 𝐴 )  ×  ( ℵ ‘ 𝐴 ) )  ≈  ( ℵ ‘ 𝐴 ) )  →  ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) )  ≼  ( ℵ ‘ 𝐴 ) ) | 
						
							| 65 | 60 63 64 | syl2an | ⊢ ( ( ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  ≼  ( ℵ ‘ 𝐴 )  ∧  𝐴  ∈  On )  →  ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) )  ≼  ( ℵ ‘ 𝐴 ) ) | 
						
							| 66 |  | nsuceq0 | ⊢ suc  1o  ≠  ∅ | 
						
							| 67 |  | dom0 | ⊢ ( suc  1o  ≼  ∅  ↔  suc  1o  =  ∅ ) | 
						
							| 68 | 66 67 | nemtbir | ⊢ ¬  suc  1o  ≼  ∅ | 
						
							| 69 |  | df-2o | ⊢ 2o  =  suc  1o | 
						
							| 70 | 69 | breq1i | ⊢ ( 2o  ≼  𝐵  ↔  suc  1o  ≼  𝐵 ) | 
						
							| 71 |  | breq2 | ⊢ ( 𝐵  =  ∅  →  ( suc  1o  ≼  𝐵  ↔  suc  1o  ≼  ∅ ) ) | 
						
							| 72 | 70 71 | bitrid | ⊢ ( 𝐵  =  ∅  →  ( 2o  ≼  𝐵  ↔  suc  1o  ≼  ∅ ) ) | 
						
							| 73 | 72 | biimpcd | ⊢ ( 2o  ≼  𝐵  →  ( 𝐵  =  ∅  →  suc  1o  ≼  ∅ ) ) | 
						
							| 74 | 73 | adantld | ⊢ ( 2o  ≼  𝐵  →  ( ( ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) )  =  ∅  ∧  𝐵  =  ∅ )  →  suc  1o  ≼  ∅ ) ) | 
						
							| 75 | 68 74 | mtoi | ⊢ ( 2o  ≼  𝐵  →  ¬  ( ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) )  =  ∅  ∧  𝐵  =  ∅ ) ) | 
						
							| 76 |  | mapdom2 | ⊢ ( ( ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) )  ≼  ( ℵ ‘ 𝐴 )  ∧  ¬  ( ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) )  =  ∅  ∧  𝐵  =  ∅ ) )  →  ( 𝐵  ↑m  ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) )  ≼  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 77 | 65 75 76 | syl2an | ⊢ ( ( ( ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  ≼  ( ℵ ‘ 𝐴 )  ∧  𝐴  ∈  On )  ∧  2o  ≼  𝐵 )  →  ( 𝐵  ↑m  ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) )  ≼  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 78 |  | domnsym | ⊢ ( ( 𝐵  ↑m  ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) )  ≼  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  →  ¬  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ≺  ( 𝐵  ↑m  ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) | 
						
							| 79 | 77 78 | syl | ⊢ ( ( ( ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  ≼  ( ℵ ‘ 𝐴 )  ∧  𝐴  ∈  On )  ∧  2o  ≼  𝐵 )  →  ¬  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ≺  ( 𝐵  ↑m  ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) | 
						
							| 80 | 79 | expl | ⊢ ( ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  ≼  ( ℵ ‘ 𝐴 )  →  ( ( 𝐴  ∈  On  ∧  2o  ≼  𝐵 )  →  ¬  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ≺  ( 𝐵  ↑m  ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) ) | 
						
							| 81 | 80 | com12 | ⊢ ( ( 𝐴  ∈  On  ∧  2o  ≼  𝐵 )  →  ( ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  ≼  ( ℵ ‘ 𝐴 )  →  ¬  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  ≺  ( 𝐵  ↑m  ( ( ℵ ‘ 𝐴 )  ×  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) ) ) | 
						
							| 82 | 59 81 | mt2d | ⊢ ( ( 𝐴  ∈  On  ∧  2o  ≼  𝐵 )  →  ¬  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  ≼  ( ℵ ‘ 𝐴 ) ) | 
						
							| 83 |  | domtri | ⊢ ( ( ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  ∈  V  ∧  ( ℵ ‘ 𝐴 )  ∈  V )  →  ( ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  ≼  ( ℵ ‘ 𝐴 )  ↔  ¬  ( ℵ ‘ 𝐴 )  ≺  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 84 | 51 5 83 | mp2an | ⊢ ( ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  ≼  ( ℵ ‘ 𝐴 )  ↔  ¬  ( ℵ ‘ 𝐴 )  ≺  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) | 
						
							| 85 | 84 | biimpri | ⊢ ( ¬  ( ℵ ‘ 𝐴 )  ≺  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  →  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  ≼  ( ℵ ‘ 𝐴 ) ) | 
						
							| 86 | 82 85 | nsyl2 | ⊢ ( ( 𝐴  ∈  On  ∧  2o  ≼  𝐵 )  →  ( ℵ ‘ 𝐴 )  ≺  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) | 
						
							| 87 | 86 | ex | ⊢ ( 𝐴  ∈  On  →  ( 2o  ≼  𝐵  →  ( ℵ ‘ 𝐴 )  ≺  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 88 |  | fndm | ⊢ ( ℵ  Fn  On  →  dom  ℵ  =  On ) | 
						
							| 89 | 35 88 | ax-mp | ⊢ dom  ℵ  =  On | 
						
							| 90 | 89 | eleq2i | ⊢ ( 𝐴  ∈  dom  ℵ  ↔  𝐴  ∈  On ) | 
						
							| 91 |  | ndmfv | ⊢ ( ¬  𝐴  ∈  dom  ℵ  →  ( ℵ ‘ 𝐴 )  =  ∅ ) | 
						
							| 92 | 90 91 | sylnbir | ⊢ ( ¬  𝐴  ∈  On  →  ( ℵ ‘ 𝐴 )  =  ∅ ) | 
						
							| 93 |  | 1n0 | ⊢ 1o  ≠  ∅ | 
						
							| 94 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 95 | 94 | 0sdom | ⊢ ( ∅  ≺  1o  ↔  1o  ≠  ∅ ) | 
						
							| 96 | 93 95 | mpbir | ⊢ ∅  ≺  1o | 
						
							| 97 |  | id | ⊢ ( ( ℵ ‘ 𝐴 )  =  ∅  →  ( ℵ ‘ 𝐴 )  =  ∅ ) | 
						
							| 98 |  | oveq2 | ⊢ ( ( ℵ ‘ 𝐴 )  =  ∅  →  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  =  ( 𝐵  ↑m  ∅ ) ) | 
						
							| 99 |  | map0e | ⊢ ( 𝐵  ∈  V  →  ( 𝐵  ↑m  ∅ )  =  1o ) | 
						
							| 100 | 1 99 | ax-mp | ⊢ ( 𝐵  ↑m  ∅ )  =  1o | 
						
							| 101 | 98 100 | eqtrdi | ⊢ ( ( ℵ ‘ 𝐴 )  =  ∅  →  ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) )  =  1o ) | 
						
							| 102 | 101 | fveq2d | ⊢ ( ( ℵ ‘ 𝐴 )  =  ∅  →  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  =  ( card ‘ 1o ) ) | 
						
							| 103 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 104 |  | cardnn | ⊢ ( 1o  ∈  ω  →  ( card ‘ 1o )  =  1o ) | 
						
							| 105 | 103 104 | ax-mp | ⊢ ( card ‘ 1o )  =  1o | 
						
							| 106 | 102 105 | eqtrdi | ⊢ ( ( ℵ ‘ 𝐴 )  =  ∅  →  ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) )  =  1o ) | 
						
							| 107 | 106 | fveq2d | ⊢ ( ( ℵ ‘ 𝐴 )  =  ∅  →  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  =  ( cf ‘ 1o ) ) | 
						
							| 108 |  | df-1o | ⊢ 1o  =  suc  ∅ | 
						
							| 109 | 108 | fveq2i | ⊢ ( cf ‘ 1o )  =  ( cf ‘ suc  ∅ ) | 
						
							| 110 |  | 0elon | ⊢ ∅  ∈  On | 
						
							| 111 |  | cfsuc | ⊢ ( ∅  ∈  On  →  ( cf ‘ suc  ∅ )  =  1o ) | 
						
							| 112 | 110 111 | ax-mp | ⊢ ( cf ‘ suc  ∅ )  =  1o | 
						
							| 113 | 109 112 | eqtri | ⊢ ( cf ‘ 1o )  =  1o | 
						
							| 114 | 107 113 | eqtrdi | ⊢ ( ( ℵ ‘ 𝐴 )  =  ∅  →  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  =  1o ) | 
						
							| 115 | 97 114 | breq12d | ⊢ ( ( ℵ ‘ 𝐴 )  =  ∅  →  ( ( ℵ ‘ 𝐴 )  ≺  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) )  ↔  ∅  ≺  1o ) ) | 
						
							| 116 | 96 115 | mpbiri | ⊢ ( ( ℵ ‘ 𝐴 )  =  ∅  →  ( ℵ ‘ 𝐴 )  ≺  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) | 
						
							| 117 | 116 | a1d | ⊢ ( ( ℵ ‘ 𝐴 )  =  ∅  →  ( 2o  ≼  𝐵  →  ( ℵ ‘ 𝐴 )  ≺  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 118 | 92 117 | syl | ⊢ ( ¬  𝐴  ∈  On  →  ( 2o  ≼  𝐵  →  ( ℵ ‘ 𝐴 )  ≺  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 119 | 87 118 | pm2.61i | ⊢ ( 2o  ≼  𝐵  →  ( ℵ ‘ 𝐴 )  ≺  ( cf ‘ ( card ‘ ( 𝐵  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) ) |