Step |
Hyp |
Ref |
Expression |
1 |
|
cfslb.1 |
⊢ 𝐴 ∈ V |
2 |
|
limord |
⊢ ( Lim 𝐴 → Ord 𝐴 ) |
3 |
|
ordsson |
⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) |
4 |
|
sstr |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝐴 ⊆ On ) → 𝑥 ⊆ On ) |
5 |
4
|
expcom |
⊢ ( 𝐴 ⊆ On → ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ On ) ) |
6 |
2 3 5
|
3syl |
⊢ ( Lim 𝐴 → ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ On ) ) |
7 |
|
onsucuni |
⊢ ( 𝑥 ⊆ On → 𝑥 ⊆ suc ∪ 𝑥 ) |
8 |
6 7
|
syl6 |
⊢ ( Lim 𝐴 → ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ suc ∪ 𝑥 ) ) |
9 |
8
|
adantrd |
⊢ ( Lim 𝐴 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) → 𝑥 ⊆ suc ∪ 𝑥 ) ) |
10 |
9
|
ralimdv |
⊢ ( Lim 𝐴 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐵 𝑥 ⊆ suc ∪ 𝑥 ) ) |
11 |
|
uniiun |
⊢ ∪ 𝐵 = ∪ 𝑥 ∈ 𝐵 𝑥 |
12 |
|
ss2iun |
⊢ ( ∀ 𝑥 ∈ 𝐵 𝑥 ⊆ suc ∪ 𝑥 → ∪ 𝑥 ∈ 𝐵 𝑥 ⊆ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ) |
13 |
11 12
|
eqsstrid |
⊢ ( ∀ 𝑥 ∈ 𝐵 𝑥 ⊆ suc ∪ 𝑥 → ∪ 𝐵 ⊆ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ) |
14 |
10 13
|
syl6 |
⊢ ( Lim 𝐴 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) → ∪ 𝐵 ⊆ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ) ) |
15 |
14
|
imp |
⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ∪ 𝐵 ⊆ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ) |
16 |
1
|
cfslbn |
⊢ ( ( Lim 𝐴 ∧ 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) → ∪ 𝑥 ∈ 𝐴 ) |
17 |
16
|
3expib |
⊢ ( Lim 𝐴 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) → ∪ 𝑥 ∈ 𝐴 ) ) |
18 |
|
ordsucss |
⊢ ( Ord 𝐴 → ( ∪ 𝑥 ∈ 𝐴 → suc ∪ 𝑥 ⊆ 𝐴 ) ) |
19 |
2 17 18
|
sylsyld |
⊢ ( Lim 𝐴 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) → suc ∪ 𝑥 ⊆ 𝐴 ) ) |
20 |
19
|
ralimdv |
⊢ ( Lim 𝐴 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ⊆ 𝐴 ) ) |
21 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ⊆ 𝐴 ↔ ∀ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ⊆ 𝐴 ) |
22 |
20 21
|
syl6ibr |
⊢ ( Lim 𝐴 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) → ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ⊆ 𝐴 ) ) |
23 |
22
|
imp |
⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ⊆ 𝐴 ) |
24 |
|
sseq1 |
⊢ ( ∪ 𝐵 = 𝐴 → ( ∪ 𝐵 ⊆ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ) ) |
25 |
|
eqss |
⊢ ( ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 = 𝐴 ↔ ( ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ) ) |
26 |
25
|
simplbi2com |
⊢ ( 𝐴 ⊆ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 → ( ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 = 𝐴 ) ) |
27 |
24 26
|
syl6bi |
⊢ ( ∪ 𝐵 = 𝐴 → ( ∪ 𝐵 ⊆ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 → ( ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 = 𝐴 ) ) ) |
28 |
27
|
com3l |
⊢ ( ∪ 𝐵 ⊆ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 → ( ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ⊆ 𝐴 → ( ∪ 𝐵 = 𝐴 → ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 = 𝐴 ) ) ) |
29 |
15 23 28
|
sylc |
⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ( ∪ 𝐵 = 𝐴 → ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 = 𝐴 ) ) |
30 |
|
limsuc |
⊢ ( Lim 𝐴 → ( ∪ 𝑥 ∈ 𝐴 ↔ suc ∪ 𝑥 ∈ 𝐴 ) ) |
31 |
17 30
|
sylibd |
⊢ ( Lim 𝐴 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) → suc ∪ 𝑥 ∈ 𝐴 ) ) |
32 |
31
|
ralimdv |
⊢ ( Lim 𝐴 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ∈ 𝐴 ) ) |
33 |
32
|
imp |
⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ∀ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ∈ 𝐴 ) |
34 |
|
r19.29 |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ∈ 𝐴 ∧ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 ) → ∃ 𝑥 ∈ 𝐵 ( suc ∪ 𝑥 ∈ 𝐴 ∧ 𝑦 = suc ∪ 𝑥 ) ) |
35 |
|
eleq1 |
⊢ ( 𝑦 = suc ∪ 𝑥 → ( 𝑦 ∈ 𝐴 ↔ suc ∪ 𝑥 ∈ 𝐴 ) ) |
36 |
35
|
biimparc |
⊢ ( ( suc ∪ 𝑥 ∈ 𝐴 ∧ 𝑦 = suc ∪ 𝑥 ) → 𝑦 ∈ 𝐴 ) |
37 |
36
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( suc ∪ 𝑥 ∈ 𝐴 ∧ 𝑦 = suc ∪ 𝑥 ) → 𝑦 ∈ 𝐴 ) |
38 |
34 37
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ∈ 𝐴 ∧ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 ) → 𝑦 ∈ 𝐴 ) |
39 |
38
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝐵 suc ∪ 𝑥 ∈ 𝐴 → ( ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
40 |
33 39
|
syl |
⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ( ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
41 |
40
|
abssdv |
⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ⊆ 𝐴 ) |
42 |
|
vuniex |
⊢ ∪ 𝑥 ∈ V |
43 |
42
|
sucex |
⊢ suc ∪ 𝑥 ∈ V |
44 |
43
|
dfiun2 |
⊢ ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } |
45 |
44
|
eqeq1i |
⊢ ( ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 = 𝐴 ↔ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } = 𝐴 ) |
46 |
1
|
cfslb |
⊢ ( ( Lim 𝐴 ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ⊆ 𝐴 ∧ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } = 𝐴 ) → ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ) |
47 |
46
|
3expia |
⊢ ( ( Lim 𝐴 ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ⊆ 𝐴 ) → ( ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } = 𝐴 → ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ) ) |
48 |
45 47
|
syl5bi |
⊢ ( ( Lim 𝐴 ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ⊆ 𝐴 ) → ( ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 = 𝐴 → ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ) ) |
49 |
41 48
|
syldan |
⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ( ∪ 𝑥 ∈ 𝐵 suc ∪ 𝑥 = 𝐴 → ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ) ) |
50 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) = ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) |
51 |
50
|
rnmpt |
⊢ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } |
52 |
43 50
|
fnmpti |
⊢ ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) Fn 𝐵 |
53 |
|
dffn4 |
⊢ ( ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) Fn 𝐵 ↔ ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝐵 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ) |
54 |
52 53
|
mpbi |
⊢ ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝐵 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) |
55 |
|
relsdom |
⊢ Rel ≺ |
56 |
55
|
brrelex1i |
⊢ ( 𝐵 ≺ ( cf ‘ 𝐴 ) → 𝐵 ∈ V ) |
57 |
|
breq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ≺ ( cf ‘ 𝐴 ) ↔ 𝐵 ≺ ( cf ‘ 𝐴 ) ) ) |
58 |
|
foeq2 |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝑦 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ↔ ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝐵 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ) ) |
59 |
|
breq2 |
⊢ ( 𝑦 = 𝐵 → ( ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝑦 ↔ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝐵 ) ) |
60 |
58 59
|
imbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝑦 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) → ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝐵 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) → ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝐵 ) ) ) |
61 |
57 60
|
imbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 ≺ ( cf ‘ 𝐴 ) → ( ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝑦 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) → ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝑦 ) ) ↔ ( 𝐵 ≺ ( cf ‘ 𝐴 ) → ( ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝐵 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) → ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝐵 ) ) ) ) |
62 |
|
cfon |
⊢ ( cf ‘ 𝐴 ) ∈ On |
63 |
|
sdomdom |
⊢ ( 𝑦 ≺ ( cf ‘ 𝐴 ) → 𝑦 ≼ ( cf ‘ 𝐴 ) ) |
64 |
|
ondomen |
⊢ ( ( ( cf ‘ 𝐴 ) ∈ On ∧ 𝑦 ≼ ( cf ‘ 𝐴 ) ) → 𝑦 ∈ dom card ) |
65 |
62 63 64
|
sylancr |
⊢ ( 𝑦 ≺ ( cf ‘ 𝐴 ) → 𝑦 ∈ dom card ) |
66 |
|
fodomnum |
⊢ ( 𝑦 ∈ dom card → ( ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝑦 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) → ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝑦 ) ) |
67 |
65 66
|
syl |
⊢ ( 𝑦 ≺ ( cf ‘ 𝐴 ) → ( ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝑦 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) → ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝑦 ) ) |
68 |
61 67
|
vtoclg |
⊢ ( 𝐵 ∈ V → ( 𝐵 ≺ ( cf ‘ 𝐴 ) → ( ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝐵 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) → ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝐵 ) ) ) |
69 |
56 68
|
mpcom |
⊢ ( 𝐵 ≺ ( cf ‘ 𝐴 ) → ( ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) : 𝐵 –onto→ ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) → ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝐵 ) ) |
70 |
54 69
|
mpi |
⊢ ( 𝐵 ≺ ( cf ‘ 𝐴 ) → ran ( 𝑥 ∈ 𝐵 ↦ suc ∪ 𝑥 ) ≼ 𝐵 ) |
71 |
51 70
|
eqbrtrrid |
⊢ ( 𝐵 ≺ ( cf ‘ 𝐴 ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ≼ 𝐵 ) |
72 |
|
domtr |
⊢ ( ( ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ≼ 𝐵 ) → ( cf ‘ 𝐴 ) ≼ 𝐵 ) |
73 |
71 72
|
sylan2 |
⊢ ( ( ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ∧ 𝐵 ≺ ( cf ‘ 𝐴 ) ) → ( cf ‘ 𝐴 ) ≼ 𝐵 ) |
74 |
|
domnsym |
⊢ ( ( cf ‘ 𝐴 ) ≼ 𝐵 → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) |
75 |
73 74
|
syl |
⊢ ( ( ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } ∧ 𝐵 ≺ ( cf ‘ 𝐴 ) ) → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) |
76 |
75
|
pm2.01da |
⊢ ( ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) |
77 |
76
|
a1i |
⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ( ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = suc ∪ 𝑥 } → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) ) |
78 |
29 49 77
|
3syld |
⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ( ∪ 𝐵 = 𝐴 → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) ) |
79 |
78
|
necon2ad |
⊢ ( ( Lim 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ( 𝐵 ≺ ( cf ‘ 𝐴 ) → ∪ 𝐵 ≠ 𝐴 ) ) |