Metamath Proof Explorer


Theorem cfslb2n

Description: Any small collection of small subsets of A cannot have union A , where "small" means smaller than the cofinality. This is a stronger version of cfslb . This is a common application of cofinality: under AC, ( aleph1 ) is regular, so it is not a countable union of countable sets. (Contributed by Mario Carneiro, 24-Jun-2013)

Ref Expression
Hypothesis cfslb.1 𝐴 ∈ V
Assertion cfslb2n ( ( Lim 𝐴 ∧ ∀ 𝑥𝐵 ( 𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ( 𝐵 ≺ ( cf ‘ 𝐴 ) → 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 cfslb.1 𝐴 ∈ V
2 limord ( Lim 𝐴 → Ord 𝐴 )
3 ordsson ( Ord 𝐴𝐴 ⊆ On )
4 sstr ( ( 𝑥𝐴𝐴 ⊆ On ) → 𝑥 ⊆ On )
5 4 expcom ( 𝐴 ⊆ On → ( 𝑥𝐴𝑥 ⊆ On ) )
6 2 3 5 3syl ( Lim 𝐴 → ( 𝑥𝐴𝑥 ⊆ On ) )
7 onsucuni ( 𝑥 ⊆ On → 𝑥 ⊆ suc 𝑥 )
8 6 7 syl6 ( Lim 𝐴 → ( 𝑥𝐴𝑥 ⊆ suc 𝑥 ) )
9 8 adantrd ( Lim 𝐴 → ( ( 𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) → 𝑥 ⊆ suc 𝑥 ) )
10 9 ralimdv ( Lim 𝐴 → ( ∀ 𝑥𝐵 ( 𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) → ∀ 𝑥𝐵 𝑥 ⊆ suc 𝑥 ) )
11 uniiun 𝐵 = 𝑥𝐵 𝑥
12 ss2iun ( ∀ 𝑥𝐵 𝑥 ⊆ suc 𝑥 𝑥𝐵 𝑥 𝑥𝐵 suc 𝑥 )
13 11 12 eqsstrid ( ∀ 𝑥𝐵 𝑥 ⊆ suc 𝑥 𝐵 𝑥𝐵 suc 𝑥 )
14 10 13 syl6 ( Lim 𝐴 → ( ∀ 𝑥𝐵 ( 𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) → 𝐵 𝑥𝐵 suc 𝑥 ) )
15 14 imp ( ( Lim 𝐴 ∧ ∀ 𝑥𝐵 ( 𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → 𝐵 𝑥𝐵 suc 𝑥 )
16 1 cfslbn ( ( Lim 𝐴𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) → 𝑥𝐴 )
17 16 3expib ( Lim 𝐴 → ( ( 𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) → 𝑥𝐴 ) )
18 ordsucss ( Ord 𝐴 → ( 𝑥𝐴 → suc 𝑥𝐴 ) )
19 2 17 18 sylsyld ( Lim 𝐴 → ( ( 𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) → suc 𝑥𝐴 ) )
20 19 ralimdv ( Lim 𝐴 → ( ∀ 𝑥𝐵 ( 𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) → ∀ 𝑥𝐵 suc 𝑥𝐴 ) )
21 iunss ( 𝑥𝐵 suc 𝑥𝐴 ↔ ∀ 𝑥𝐵 suc 𝑥𝐴 )
22 20 21 syl6ibr ( Lim 𝐴 → ( ∀ 𝑥𝐵 ( 𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) → 𝑥𝐵 suc 𝑥𝐴 ) )
23 22 imp ( ( Lim 𝐴 ∧ ∀ 𝑥𝐵 ( 𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → 𝑥𝐵 suc 𝑥𝐴 )
24 sseq1 ( 𝐵 = 𝐴 → ( 𝐵 𝑥𝐵 suc 𝑥𝐴 𝑥𝐵 suc 𝑥 ) )
25 eqss ( 𝑥𝐵 suc 𝑥 = 𝐴 ↔ ( 𝑥𝐵 suc 𝑥𝐴𝐴 𝑥𝐵 suc 𝑥 ) )
26 25 simplbi2com ( 𝐴 𝑥𝐵 suc 𝑥 → ( 𝑥𝐵 suc 𝑥𝐴 𝑥𝐵 suc 𝑥 = 𝐴 ) )
27 24 26 syl6bi ( 𝐵 = 𝐴 → ( 𝐵 𝑥𝐵 suc 𝑥 → ( 𝑥𝐵 suc 𝑥𝐴 𝑥𝐵 suc 𝑥 = 𝐴 ) ) )
28 27 com3l ( 𝐵 𝑥𝐵 suc 𝑥 → ( 𝑥𝐵 suc 𝑥𝐴 → ( 𝐵 = 𝐴 𝑥𝐵 suc 𝑥 = 𝐴 ) ) )
29 15 23 28 sylc ( ( Lim 𝐴 ∧ ∀ 𝑥𝐵 ( 𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ( 𝐵 = 𝐴 𝑥𝐵 suc 𝑥 = 𝐴 ) )
30 limsuc ( Lim 𝐴 → ( 𝑥𝐴 ↔ suc 𝑥𝐴 ) )
31 17 30 sylibd ( Lim 𝐴 → ( ( 𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) → suc 𝑥𝐴 ) )
32 31 ralimdv ( Lim 𝐴 → ( ∀ 𝑥𝐵 ( 𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) → ∀ 𝑥𝐵 suc 𝑥𝐴 ) )
33 32 imp ( ( Lim 𝐴 ∧ ∀ 𝑥𝐵 ( 𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ∀ 𝑥𝐵 suc 𝑥𝐴 )
34 r19.29 ( ( ∀ 𝑥𝐵 suc 𝑥𝐴 ∧ ∃ 𝑥𝐵 𝑦 = suc 𝑥 ) → ∃ 𝑥𝐵 ( suc 𝑥𝐴𝑦 = suc 𝑥 ) )
35 eleq1 ( 𝑦 = suc 𝑥 → ( 𝑦𝐴 ↔ suc 𝑥𝐴 ) )
36 35 biimparc ( ( suc 𝑥𝐴𝑦 = suc 𝑥 ) → 𝑦𝐴 )
37 36 rexlimivw ( ∃ 𝑥𝐵 ( suc 𝑥𝐴𝑦 = suc 𝑥 ) → 𝑦𝐴 )
38 34 37 syl ( ( ∀ 𝑥𝐵 suc 𝑥𝐴 ∧ ∃ 𝑥𝐵 𝑦 = suc 𝑥 ) → 𝑦𝐴 )
39 38 ex ( ∀ 𝑥𝐵 suc 𝑥𝐴 → ( ∃ 𝑥𝐵 𝑦 = suc 𝑥𝑦𝐴 ) )
40 33 39 syl ( ( Lim 𝐴 ∧ ∀ 𝑥𝐵 ( 𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ( ∃ 𝑥𝐵 𝑦 = suc 𝑥𝑦𝐴 ) )
41 40 abssdv ( ( Lim 𝐴 ∧ ∀ 𝑥𝐵 ( 𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = suc 𝑥 } ⊆ 𝐴 )
42 vuniex 𝑥 ∈ V
43 42 sucex suc 𝑥 ∈ V
44 43 dfiun2 𝑥𝐵 suc 𝑥 = { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = suc 𝑥 }
45 44 eqeq1i ( 𝑥𝐵 suc 𝑥 = 𝐴 { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = suc 𝑥 } = 𝐴 )
46 1 cfslb ( ( Lim 𝐴 ∧ { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = suc 𝑥 } ⊆ 𝐴 { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = suc 𝑥 } = 𝐴 ) → ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = suc 𝑥 } )
47 46 3expia ( ( Lim 𝐴 ∧ { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = suc 𝑥 } ⊆ 𝐴 ) → ( { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = suc 𝑥 } = 𝐴 → ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = suc 𝑥 } ) )
48 45 47 syl5bi ( ( Lim 𝐴 ∧ { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = suc 𝑥 } ⊆ 𝐴 ) → ( 𝑥𝐵 suc 𝑥 = 𝐴 → ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = suc 𝑥 } ) )
49 41 48 syldan ( ( Lim 𝐴 ∧ ∀ 𝑥𝐵 ( 𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ( 𝑥𝐵 suc 𝑥 = 𝐴 → ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = suc 𝑥 } ) )
50 eqid ( 𝑥𝐵 ↦ suc 𝑥 ) = ( 𝑥𝐵 ↦ suc 𝑥 )
51 50 rnmpt ran ( 𝑥𝐵 ↦ suc 𝑥 ) = { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = suc 𝑥 }
52 43 50 fnmpti ( 𝑥𝐵 ↦ suc 𝑥 ) Fn 𝐵
53 dffn4 ( ( 𝑥𝐵 ↦ suc 𝑥 ) Fn 𝐵 ↔ ( 𝑥𝐵 ↦ suc 𝑥 ) : 𝐵onto→ ran ( 𝑥𝐵 ↦ suc 𝑥 ) )
54 52 53 mpbi ( 𝑥𝐵 ↦ suc 𝑥 ) : 𝐵onto→ ran ( 𝑥𝐵 ↦ suc 𝑥 )
55 relsdom Rel ≺
56 55 brrelex1i ( 𝐵 ≺ ( cf ‘ 𝐴 ) → 𝐵 ∈ V )
57 breq1 ( 𝑦 = 𝐵 → ( 𝑦 ≺ ( cf ‘ 𝐴 ) ↔ 𝐵 ≺ ( cf ‘ 𝐴 ) ) )
58 foeq2 ( 𝑦 = 𝐵 → ( ( 𝑥𝐵 ↦ suc 𝑥 ) : 𝑦onto→ ran ( 𝑥𝐵 ↦ suc 𝑥 ) ↔ ( 𝑥𝐵 ↦ suc 𝑥 ) : 𝐵onto→ ran ( 𝑥𝐵 ↦ suc 𝑥 ) ) )
59 breq2 ( 𝑦 = 𝐵 → ( ran ( 𝑥𝐵 ↦ suc 𝑥 ) ≼ 𝑦 ↔ ran ( 𝑥𝐵 ↦ suc 𝑥 ) ≼ 𝐵 ) )
60 58 59 imbi12d ( 𝑦 = 𝐵 → ( ( ( 𝑥𝐵 ↦ suc 𝑥 ) : 𝑦onto→ ran ( 𝑥𝐵 ↦ suc 𝑥 ) → ran ( 𝑥𝐵 ↦ suc 𝑥 ) ≼ 𝑦 ) ↔ ( ( 𝑥𝐵 ↦ suc 𝑥 ) : 𝐵onto→ ran ( 𝑥𝐵 ↦ suc 𝑥 ) → ran ( 𝑥𝐵 ↦ suc 𝑥 ) ≼ 𝐵 ) ) )
61 57 60 imbi12d ( 𝑦 = 𝐵 → ( ( 𝑦 ≺ ( cf ‘ 𝐴 ) → ( ( 𝑥𝐵 ↦ suc 𝑥 ) : 𝑦onto→ ran ( 𝑥𝐵 ↦ suc 𝑥 ) → ran ( 𝑥𝐵 ↦ suc 𝑥 ) ≼ 𝑦 ) ) ↔ ( 𝐵 ≺ ( cf ‘ 𝐴 ) → ( ( 𝑥𝐵 ↦ suc 𝑥 ) : 𝐵onto→ ran ( 𝑥𝐵 ↦ suc 𝑥 ) → ran ( 𝑥𝐵 ↦ suc 𝑥 ) ≼ 𝐵 ) ) ) )
62 cfon ( cf ‘ 𝐴 ) ∈ On
63 sdomdom ( 𝑦 ≺ ( cf ‘ 𝐴 ) → 𝑦 ≼ ( cf ‘ 𝐴 ) )
64 ondomen ( ( ( cf ‘ 𝐴 ) ∈ On ∧ 𝑦 ≼ ( cf ‘ 𝐴 ) ) → 𝑦 ∈ dom card )
65 62 63 64 sylancr ( 𝑦 ≺ ( cf ‘ 𝐴 ) → 𝑦 ∈ dom card )
66 fodomnum ( 𝑦 ∈ dom card → ( ( 𝑥𝐵 ↦ suc 𝑥 ) : 𝑦onto→ ran ( 𝑥𝐵 ↦ suc 𝑥 ) → ran ( 𝑥𝐵 ↦ suc 𝑥 ) ≼ 𝑦 ) )
67 65 66 syl ( 𝑦 ≺ ( cf ‘ 𝐴 ) → ( ( 𝑥𝐵 ↦ suc 𝑥 ) : 𝑦onto→ ran ( 𝑥𝐵 ↦ suc 𝑥 ) → ran ( 𝑥𝐵 ↦ suc 𝑥 ) ≼ 𝑦 ) )
68 61 67 vtoclg ( 𝐵 ∈ V → ( 𝐵 ≺ ( cf ‘ 𝐴 ) → ( ( 𝑥𝐵 ↦ suc 𝑥 ) : 𝐵onto→ ran ( 𝑥𝐵 ↦ suc 𝑥 ) → ran ( 𝑥𝐵 ↦ suc 𝑥 ) ≼ 𝐵 ) ) )
69 56 68 mpcom ( 𝐵 ≺ ( cf ‘ 𝐴 ) → ( ( 𝑥𝐵 ↦ suc 𝑥 ) : 𝐵onto→ ran ( 𝑥𝐵 ↦ suc 𝑥 ) → ran ( 𝑥𝐵 ↦ suc 𝑥 ) ≼ 𝐵 ) )
70 54 69 mpi ( 𝐵 ≺ ( cf ‘ 𝐴 ) → ran ( 𝑥𝐵 ↦ suc 𝑥 ) ≼ 𝐵 )
71 51 70 eqbrtrrid ( 𝐵 ≺ ( cf ‘ 𝐴 ) → { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = suc 𝑥 } ≼ 𝐵 )
72 domtr ( ( ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = suc 𝑥 } ∧ { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = suc 𝑥 } ≼ 𝐵 ) → ( cf ‘ 𝐴 ) ≼ 𝐵 )
73 71 72 sylan2 ( ( ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = suc 𝑥 } ∧ 𝐵 ≺ ( cf ‘ 𝐴 ) ) → ( cf ‘ 𝐴 ) ≼ 𝐵 )
74 domnsym ( ( cf ‘ 𝐴 ) ≼ 𝐵 → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) )
75 73 74 syl ( ( ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = suc 𝑥 } ∧ 𝐵 ≺ ( cf ‘ 𝐴 ) ) → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) )
76 75 pm2.01da ( ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = suc 𝑥 } → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) )
77 76 a1i ( ( Lim 𝐴 ∧ ∀ 𝑥𝐵 ( 𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ( ( cf ‘ 𝐴 ) ≼ { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = suc 𝑥 } → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) )
78 29 49 77 3syld ( ( Lim 𝐴 ∧ ∀ 𝑥𝐵 ( 𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ( 𝐵 = 𝐴 → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) )
79 78 necon2ad ( ( Lim 𝐴 ∧ ∀ 𝑥𝐵 ( 𝑥𝐴𝑥 ≺ ( cf ‘ 𝐴 ) ) ) → ( 𝐵 ≺ ( cf ‘ 𝐴 ) → 𝐵𝐴 ) )