Step |
Hyp |
Ref |
Expression |
1 |
|
cfslb.1 |
⊢ 𝐴 ∈ V |
2 |
|
uniss |
⊢ ( 𝐵 ⊆ 𝐴 → ∪ 𝐵 ⊆ ∪ 𝐴 ) |
3 |
|
limuni |
⊢ ( Lim 𝐴 → 𝐴 = ∪ 𝐴 ) |
4 |
3
|
sseq2d |
⊢ ( Lim 𝐴 → ( ∪ 𝐵 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ ∪ 𝐴 ) ) |
5 |
2 4
|
syl5ibr |
⊢ ( Lim 𝐴 → ( 𝐵 ⊆ 𝐴 → ∪ 𝐵 ⊆ 𝐴 ) ) |
6 |
5
|
imp |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ∪ 𝐵 ⊆ 𝐴 ) |
7 |
|
limord |
⊢ ( Lim 𝐴 → Ord 𝐴 ) |
8 |
|
ordsson |
⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) |
9 |
7 8
|
syl |
⊢ ( Lim 𝐴 → 𝐴 ⊆ On ) |
10 |
|
sstr2 |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐴 ⊆ On → 𝐵 ⊆ On ) ) |
11 |
9 10
|
syl5com |
⊢ ( Lim 𝐴 → ( 𝐵 ⊆ 𝐴 → 𝐵 ⊆ On ) ) |
12 |
|
ssorduni |
⊢ ( 𝐵 ⊆ On → Ord ∪ 𝐵 ) |
13 |
11 12
|
syl6 |
⊢ ( Lim 𝐴 → ( 𝐵 ⊆ 𝐴 → Ord ∪ 𝐵 ) ) |
14 |
13 7
|
jctird |
⊢ ( Lim 𝐴 → ( 𝐵 ⊆ 𝐴 → ( Ord ∪ 𝐵 ∧ Ord 𝐴 ) ) ) |
15 |
|
ordsseleq |
⊢ ( ( Ord ∪ 𝐵 ∧ Ord 𝐴 ) → ( ∪ 𝐵 ⊆ 𝐴 ↔ ( ∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴 ) ) ) |
16 |
14 15
|
syl6 |
⊢ ( Lim 𝐴 → ( 𝐵 ⊆ 𝐴 → ( ∪ 𝐵 ⊆ 𝐴 ↔ ( ∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴 ) ) ) ) |
17 |
16
|
imp |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∪ 𝐵 ⊆ 𝐴 ↔ ( ∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴 ) ) ) |
18 |
6 17
|
mpbid |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴 ) ) |
19 |
18
|
ord |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ¬ ∪ 𝐵 ∈ 𝐴 → ∪ 𝐵 = 𝐴 ) ) |
20 |
1
|
cfslb |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∪ 𝐵 = 𝐴 ) → ( cf ‘ 𝐴 ) ≼ 𝐵 ) |
21 |
|
domnsym |
⊢ ( ( cf ‘ 𝐴 ) ≼ 𝐵 → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) |
22 |
20 21
|
syl |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∪ 𝐵 = 𝐴 ) → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) |
23 |
22
|
3expia |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∪ 𝐵 = 𝐴 → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) ) |
24 |
19 23
|
syld |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ¬ ∪ 𝐵 ∈ 𝐴 → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) ) |
25 |
24
|
con4d |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐵 ≺ ( cf ‘ 𝐴 ) → ∪ 𝐵 ∈ 𝐴 ) ) |
26 |
25
|
3impia |
⊢ ( ( Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≺ ( cf ‘ 𝐴 ) ) → ∪ 𝐵 ∈ 𝐴 ) |