Metamath Proof Explorer


Theorem cfslbn

Description: Any subset of A smaller than its cofinality has union less than A . (This is the contrapositive to cfslb .) (Contributed by Mario Carneiro, 24-Jun-2013)

Ref Expression
Hypothesis cfslb.1 𝐴 ∈ V
Assertion cfslbn ( ( Lim 𝐴𝐵𝐴𝐵 ≺ ( cf ‘ 𝐴 ) ) → 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 cfslb.1 𝐴 ∈ V
2 uniss ( 𝐵𝐴 𝐵 𝐴 )
3 limuni ( Lim 𝐴𝐴 = 𝐴 )
4 3 sseq2d ( Lim 𝐴 → ( 𝐵𝐴 𝐵 𝐴 ) )
5 2 4 syl5ibr ( Lim 𝐴 → ( 𝐵𝐴 𝐵𝐴 ) )
6 5 imp ( ( Lim 𝐴𝐵𝐴 ) → 𝐵𝐴 )
7 limord ( Lim 𝐴 → Ord 𝐴 )
8 ordsson ( Ord 𝐴𝐴 ⊆ On )
9 7 8 syl ( Lim 𝐴𝐴 ⊆ On )
10 sstr2 ( 𝐵𝐴 → ( 𝐴 ⊆ On → 𝐵 ⊆ On ) )
11 9 10 syl5com ( Lim 𝐴 → ( 𝐵𝐴𝐵 ⊆ On ) )
12 ssorduni ( 𝐵 ⊆ On → Ord 𝐵 )
13 11 12 syl6 ( Lim 𝐴 → ( 𝐵𝐴 → Ord 𝐵 ) )
14 13 7 jctird ( Lim 𝐴 → ( 𝐵𝐴 → ( Ord 𝐵 ∧ Ord 𝐴 ) ) )
15 ordsseleq ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵𝐴 ↔ ( 𝐵𝐴 𝐵 = 𝐴 ) ) )
16 14 15 syl6 ( Lim 𝐴 → ( 𝐵𝐴 → ( 𝐵𝐴 ↔ ( 𝐵𝐴 𝐵 = 𝐴 ) ) ) )
17 16 imp ( ( Lim 𝐴𝐵𝐴 ) → ( 𝐵𝐴 ↔ ( 𝐵𝐴 𝐵 = 𝐴 ) ) )
18 6 17 mpbid ( ( Lim 𝐴𝐵𝐴 ) → ( 𝐵𝐴 𝐵 = 𝐴 ) )
19 18 ord ( ( Lim 𝐴𝐵𝐴 ) → ( ¬ 𝐵𝐴 𝐵 = 𝐴 ) )
20 1 cfslb ( ( Lim 𝐴𝐵𝐴 𝐵 = 𝐴 ) → ( cf ‘ 𝐴 ) ≼ 𝐵 )
21 domnsym ( ( cf ‘ 𝐴 ) ≼ 𝐵 → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) )
22 20 21 syl ( ( Lim 𝐴𝐵𝐴 𝐵 = 𝐴 ) → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) )
23 22 3expia ( ( Lim 𝐴𝐵𝐴 ) → ( 𝐵 = 𝐴 → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) )
24 19 23 syld ( ( Lim 𝐴𝐵𝐴 ) → ( ¬ 𝐵𝐴 → ¬ 𝐵 ≺ ( cf ‘ 𝐴 ) ) )
25 24 con4d ( ( Lim 𝐴𝐵𝐴 ) → ( 𝐵 ≺ ( cf ‘ 𝐴 ) → 𝐵𝐴 ) )
26 25 3impia ( ( Lim 𝐴𝐵𝐴𝐵 ≺ ( cf ‘ 𝐴 ) ) → 𝐵𝐴 )