Step |
Hyp |
Ref |
Expression |
1 |
|
dmeq |
⊢ ( 𝑥 = 𝑧 → dom 𝑥 = dom 𝑧 ) |
2 |
1
|
fveq2d |
⊢ ( 𝑥 = 𝑧 → ( ℎ ‘ dom 𝑥 ) = ( ℎ ‘ dom 𝑧 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 ‘ 𝑛 ) = ( 𝑥 ‘ 𝑚 ) ) |
4 |
|
suceq |
⊢ ( ( 𝑥 ‘ 𝑛 ) = ( 𝑥 ‘ 𝑚 ) → suc ( 𝑥 ‘ 𝑛 ) = suc ( 𝑥 ‘ 𝑚 ) ) |
5 |
3 4
|
syl |
⊢ ( 𝑛 = 𝑚 → suc ( 𝑥 ‘ 𝑛 ) = suc ( 𝑥 ‘ 𝑚 ) ) |
6 |
5
|
cbviunv |
⊢ ∪ 𝑛 ∈ dom 𝑥 suc ( 𝑥 ‘ 𝑛 ) = ∪ 𝑚 ∈ dom 𝑥 suc ( 𝑥 ‘ 𝑚 ) |
7 |
|
fveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ‘ 𝑚 ) = ( 𝑧 ‘ 𝑚 ) ) |
8 |
|
suceq |
⊢ ( ( 𝑥 ‘ 𝑚 ) = ( 𝑧 ‘ 𝑚 ) → suc ( 𝑥 ‘ 𝑚 ) = suc ( 𝑧 ‘ 𝑚 ) ) |
9 |
7 8
|
syl |
⊢ ( 𝑥 = 𝑧 → suc ( 𝑥 ‘ 𝑚 ) = suc ( 𝑧 ‘ 𝑚 ) ) |
10 |
1 9
|
iuneq12d |
⊢ ( 𝑥 = 𝑧 → ∪ 𝑚 ∈ dom 𝑥 suc ( 𝑥 ‘ 𝑚 ) = ∪ 𝑚 ∈ dom 𝑧 suc ( 𝑧 ‘ 𝑚 ) ) |
11 |
6 10
|
eqtrid |
⊢ ( 𝑥 = 𝑧 → ∪ 𝑛 ∈ dom 𝑥 suc ( 𝑥 ‘ 𝑛 ) = ∪ 𝑚 ∈ dom 𝑧 suc ( 𝑧 ‘ 𝑚 ) ) |
12 |
2 11
|
uneq12d |
⊢ ( 𝑥 = 𝑧 → ( ( ℎ ‘ dom 𝑥 ) ∪ ∪ 𝑛 ∈ dom 𝑥 suc ( 𝑥 ‘ 𝑛 ) ) = ( ( ℎ ‘ dom 𝑧 ) ∪ ∪ 𝑚 ∈ dom 𝑧 suc ( 𝑧 ‘ 𝑚 ) ) ) |
13 |
12
|
cbvmptv |
⊢ ( 𝑥 ∈ V ↦ ( ( ℎ ‘ dom 𝑥 ) ∪ ∪ 𝑛 ∈ dom 𝑥 suc ( 𝑥 ‘ 𝑛 ) ) ) = ( 𝑧 ∈ V ↦ ( ( ℎ ‘ dom 𝑧 ) ∪ ∪ 𝑚 ∈ dom 𝑧 suc ( 𝑧 ‘ 𝑚 ) ) ) |
14 |
|
eqid |
⊢ ( recs ( ( 𝑥 ∈ V ↦ ( ( ℎ ‘ dom 𝑥 ) ∪ ∪ 𝑛 ∈ dom 𝑥 suc ( 𝑥 ‘ 𝑛 ) ) ) ) ↾ ( cf ‘ 𝐴 ) ) = ( recs ( ( 𝑥 ∈ V ↦ ( ( ℎ ‘ dom 𝑥 ) ∪ ∪ 𝑛 ∈ dom 𝑥 suc ( 𝑥 ‘ 𝑛 ) ) ) ) ↾ ( cf ‘ 𝐴 ) ) |
15 |
13 14
|
cfsmolem |
⊢ ( 𝐴 ∈ On → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |