Metamath Proof Explorer


Theorem cfsmo

Description: The map in cff1 can be assumed to be a strictly monotone ordinal function without loss of generality. (Contributed by Mario Carneiro, 28-Feb-2013)

Ref Expression
Assertion cfsmo ( 𝐴 ∈ On → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧𝐴𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓𝑤 ) ) )

Proof

Step Hyp Ref Expression
1 dmeq ( 𝑥 = 𝑧 → dom 𝑥 = dom 𝑧 )
2 1 fveq2d ( 𝑥 = 𝑧 → ( ‘ dom 𝑥 ) = ( ‘ dom 𝑧 ) )
3 fveq2 ( 𝑛 = 𝑚 → ( 𝑥𝑛 ) = ( 𝑥𝑚 ) )
4 suceq ( ( 𝑥𝑛 ) = ( 𝑥𝑚 ) → suc ( 𝑥𝑛 ) = suc ( 𝑥𝑚 ) )
5 3 4 syl ( 𝑛 = 𝑚 → suc ( 𝑥𝑛 ) = suc ( 𝑥𝑚 ) )
6 5 cbviunv 𝑛 ∈ dom 𝑥 suc ( 𝑥𝑛 ) = 𝑚 ∈ dom 𝑥 suc ( 𝑥𝑚 )
7 fveq1 ( 𝑥 = 𝑧 → ( 𝑥𝑚 ) = ( 𝑧𝑚 ) )
8 suceq ( ( 𝑥𝑚 ) = ( 𝑧𝑚 ) → suc ( 𝑥𝑚 ) = suc ( 𝑧𝑚 ) )
9 7 8 syl ( 𝑥 = 𝑧 → suc ( 𝑥𝑚 ) = suc ( 𝑧𝑚 ) )
10 1 9 iuneq12d ( 𝑥 = 𝑧 𝑚 ∈ dom 𝑥 suc ( 𝑥𝑚 ) = 𝑚 ∈ dom 𝑧 suc ( 𝑧𝑚 ) )
11 6 10 eqtrid ( 𝑥 = 𝑧 𝑛 ∈ dom 𝑥 suc ( 𝑥𝑛 ) = 𝑚 ∈ dom 𝑧 suc ( 𝑧𝑚 ) )
12 2 11 uneq12d ( 𝑥 = 𝑧 → ( ( ‘ dom 𝑥 ) ∪ 𝑛 ∈ dom 𝑥 suc ( 𝑥𝑛 ) ) = ( ( ‘ dom 𝑧 ) ∪ 𝑚 ∈ dom 𝑧 suc ( 𝑧𝑚 ) ) )
13 12 cbvmptv ( 𝑥 ∈ V ↦ ( ( ‘ dom 𝑥 ) ∪ 𝑛 ∈ dom 𝑥 suc ( 𝑥𝑛 ) ) ) = ( 𝑧 ∈ V ↦ ( ( ‘ dom 𝑧 ) ∪ 𝑚 ∈ dom 𝑧 suc ( 𝑧𝑚 ) ) )
14 eqid ( recs ( ( 𝑥 ∈ V ↦ ( ( ‘ dom 𝑥 ) ∪ 𝑛 ∈ dom 𝑥 suc ( 𝑥𝑛 ) ) ) ) ↾ ( cf ‘ 𝐴 ) ) = ( recs ( ( 𝑥 ∈ V ↦ ( ( ‘ dom 𝑥 ) ∪ 𝑛 ∈ dom 𝑥 suc ( 𝑥𝑛 ) ) ) ) ↾ ( cf ‘ 𝐴 ) )
15 13 14 cfsmolem ( 𝐴 ∈ On → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧𝐴𝑤 ∈ ( cf ‘ 𝐴 ) 𝑧 ⊆ ( 𝑓𝑤 ) ) )