| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cfss.1 |
⊢ 𝐴 ∈ V |
| 2 |
1
|
cflim3 |
⊢ ( Lim 𝐴 → ( cf ‘ 𝐴 ) = ∩ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝑥 ) ) |
| 3 |
|
fvex |
⊢ ( card ‘ 𝑥 ) ∈ V |
| 4 |
3
|
dfiin2 |
⊢ ∩ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝑥 ) = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } |
| 5 |
|
cardon |
⊢ ( card ‘ 𝑥 ) ∈ On |
| 6 |
|
eleq1 |
⊢ ( 𝑦 = ( card ‘ 𝑥 ) → ( 𝑦 ∈ On ↔ ( card ‘ 𝑥 ) ∈ On ) ) |
| 7 |
5 6
|
mpbiri |
⊢ ( 𝑦 = ( card ‘ 𝑥 ) → 𝑦 ∈ On ) |
| 8 |
7
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) → 𝑦 ∈ On ) |
| 9 |
8
|
abssi |
⊢ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ⊆ On |
| 10 |
|
limuni |
⊢ ( Lim 𝐴 → 𝐴 = ∪ 𝐴 ) |
| 11 |
10
|
eqcomd |
⊢ ( Lim 𝐴 → ∪ 𝐴 = 𝐴 ) |
| 12 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( card ‘ 𝑥 ) = ( card ‘ 𝐴 ) ) |
| 13 |
12
|
eqcomd |
⊢ ( 𝑥 = 𝐴 → ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) |
| 14 |
13
|
biantrud |
⊢ ( 𝑥 = 𝐴 → ( ∪ 𝐴 = 𝐴 ↔ ( ∪ 𝐴 = 𝐴 ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) ) |
| 15 |
|
unieq |
⊢ ( 𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴 ) |
| 16 |
15
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ∪ 𝑥 = 𝐴 ↔ ∪ 𝐴 = 𝐴 ) ) |
| 17 |
1
|
pwid |
⊢ 𝐴 ∈ 𝒫 𝐴 |
| 18 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝐴 ∈ 𝒫 𝐴 ) ) |
| 19 |
17 18
|
mpbiri |
⊢ ( 𝑥 = 𝐴 → 𝑥 ∈ 𝒫 𝐴 ) |
| 20 |
19
|
biantrurd |
⊢ ( 𝑥 = 𝐴 → ( ∪ 𝑥 = 𝐴 ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ) ) |
| 21 |
16 20
|
bitr3d |
⊢ ( 𝑥 = 𝐴 → ( ∪ 𝐴 = 𝐴 ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ) ) |
| 22 |
21
|
anbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( ∪ 𝐴 = 𝐴 ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ↔ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) ) |
| 23 |
14 22
|
bitr2d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ↔ ∪ 𝐴 = 𝐴 ) ) |
| 24 |
1 23
|
spcev |
⊢ ( ∪ 𝐴 = 𝐴 → ∃ 𝑥 ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) |
| 25 |
11 24
|
syl |
⊢ ( Lim 𝐴 → ∃ 𝑥 ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) |
| 26 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) |
| 27 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ) |
| 28 |
27
|
anbi1i |
⊢ ( ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ↔ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) |
| 29 |
28
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ↔ ∃ 𝑥 ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) |
| 30 |
26 29
|
bitri |
⊢ ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ↔ ∃ 𝑥 ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) |
| 31 |
25 30
|
sylibr |
⊢ ( Lim 𝐴 → ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) |
| 32 |
|
fvex |
⊢ ( card ‘ 𝐴 ) ∈ V |
| 33 |
|
eqeq1 |
⊢ ( 𝑦 = ( card ‘ 𝐴 ) → ( 𝑦 = ( card ‘ 𝑥 ) ↔ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) |
| 34 |
33
|
rexbidv |
⊢ ( 𝑦 = ( card ‘ 𝐴 ) → ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) |
| 35 |
32 34
|
spcev |
⊢ ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) → ∃ 𝑦 ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) ) |
| 36 |
31 35
|
syl |
⊢ ( Lim 𝐴 → ∃ 𝑦 ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) ) |
| 37 |
|
abn0 |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ≠ ∅ ↔ ∃ 𝑦 ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) ) |
| 38 |
36 37
|
sylibr |
⊢ ( Lim 𝐴 → { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ≠ ∅ ) |
| 39 |
|
onint |
⊢ ( ( { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ⊆ On ∧ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ≠ ∅ ) → ∩ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ∈ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ) |
| 40 |
9 38 39
|
sylancr |
⊢ ( Lim 𝐴 → ∩ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ∈ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ) |
| 41 |
4 40
|
eqeltrid |
⊢ ( Lim 𝐴 → ∩ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝑥 ) ∈ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ) |
| 42 |
2 41
|
eqeltrd |
⊢ ( Lim 𝐴 → ( cf ‘ 𝐴 ) ∈ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ) |
| 43 |
|
fvex |
⊢ ( cf ‘ 𝐴 ) ∈ V |
| 44 |
|
eqeq1 |
⊢ ( 𝑦 = ( cf ‘ 𝐴 ) → ( 𝑦 = ( card ‘ 𝑥 ) ↔ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) |
| 45 |
44
|
rexbidv |
⊢ ( 𝑦 = ( cf ‘ 𝐴 ) → ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) |
| 46 |
43 45
|
elab |
⊢ ( ( cf ‘ 𝐴 ) ∈ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ↔ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) |
| 47 |
42 46
|
sylib |
⊢ ( Lim 𝐴 → ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) |
| 48 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) |
| 49 |
47 48
|
sylib |
⊢ ( Lim 𝐴 → ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) |
| 50 |
|
simprl |
⊢ ( ( Lim 𝐴 ∧ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) → 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ) |
| 51 |
50 27
|
sylib |
⊢ ( ( Lim 𝐴 ∧ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) → ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ) |
| 52 |
51
|
simpld |
⊢ ( ( Lim 𝐴 ∧ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) → 𝑥 ∈ 𝒫 𝐴 ) |
| 53 |
52
|
elpwid |
⊢ ( ( Lim 𝐴 ∧ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) → 𝑥 ⊆ 𝐴 ) |
| 54 |
|
simpl |
⊢ ( ( Lim 𝐴 ∧ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) → Lim 𝐴 ) |
| 55 |
|
vex |
⊢ 𝑥 ∈ V |
| 56 |
|
limord |
⊢ ( Lim 𝐴 → Ord 𝐴 ) |
| 57 |
|
ordsson |
⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) |
| 58 |
56 57
|
syl |
⊢ ( Lim 𝐴 → 𝐴 ⊆ On ) |
| 59 |
|
sstr |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝐴 ⊆ On ) → 𝑥 ⊆ On ) |
| 60 |
58 59
|
sylan2 |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ Lim 𝐴 ) → 𝑥 ⊆ On ) |
| 61 |
|
onssnum |
⊢ ( ( 𝑥 ∈ V ∧ 𝑥 ⊆ On ) → 𝑥 ∈ dom card ) |
| 62 |
55 60 61
|
sylancr |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ Lim 𝐴 ) → 𝑥 ∈ dom card ) |
| 63 |
|
cardid2 |
⊢ ( 𝑥 ∈ dom card → ( card ‘ 𝑥 ) ≈ 𝑥 ) |
| 64 |
62 63
|
syl |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ Lim 𝐴 ) → ( card ‘ 𝑥 ) ≈ 𝑥 ) |
| 65 |
64
|
ensymd |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ Lim 𝐴 ) → 𝑥 ≈ ( card ‘ 𝑥 ) ) |
| 66 |
53 54 65
|
syl2anc |
⊢ ( ( Lim 𝐴 ∧ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) → 𝑥 ≈ ( card ‘ 𝑥 ) ) |
| 67 |
|
simprr |
⊢ ( ( Lim 𝐴 ∧ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) → ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) |
| 68 |
66 67
|
breqtrrd |
⊢ ( ( Lim 𝐴 ∧ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) → 𝑥 ≈ ( cf ‘ 𝐴 ) ) |
| 69 |
51
|
simprd |
⊢ ( ( Lim 𝐴 ∧ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) → ∪ 𝑥 = 𝐴 ) |
| 70 |
53 68 69
|
3jca |
⊢ ( ( Lim 𝐴 ∧ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) → ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( cf ‘ 𝐴 ) ∧ ∪ 𝑥 = 𝐴 ) ) |
| 71 |
70
|
ex |
⊢ ( Lim 𝐴 → ( ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) → ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( cf ‘ 𝐴 ) ∧ ∪ 𝑥 = 𝐴 ) ) ) |
| 72 |
71
|
eximdv |
⊢ ( Lim 𝐴 → ( ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( cf ‘ 𝐴 ) ∧ ∪ 𝑥 = 𝐴 ) ) ) |
| 73 |
49 72
|
mpd |
⊢ ( Lim 𝐴 → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( cf ‘ 𝐴 ) ∧ ∪ 𝑥 = 𝐴 ) ) |