| Step | Hyp | Ref | Expression | 
						
							| 1 |  | onsucb | ⊢ ( 𝐴  ∈  On  ↔  suc  𝐴  ∈  On ) | 
						
							| 2 |  | cfval | ⊢ ( suc  𝐴  ∈  On  →  ( cf ‘ suc  𝐴 )  =  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } ) | 
						
							| 3 | 1 2 | sylbi | ⊢ ( 𝐴  ∈  On  →  ( cf ‘ suc  𝐴 )  =  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } ) | 
						
							| 4 |  | cardsn | ⊢ ( 𝐴  ∈  On  →  ( card ‘ { 𝐴 } )  =  1o ) | 
						
							| 5 | 4 | eqcomd | ⊢ ( 𝐴  ∈  On  →  1o  =  ( card ‘ { 𝐴 } ) ) | 
						
							| 6 |  | snidg | ⊢ ( 𝐴  ∈  On  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 7 |  | elsuci | ⊢ ( 𝑧  ∈  suc  𝐴  →  ( 𝑧  ∈  𝐴  ∨  𝑧  =  𝐴 ) ) | 
						
							| 8 |  | onelss | ⊢ ( 𝐴  ∈  On  →  ( 𝑧  ∈  𝐴  →  𝑧  ⊆  𝐴 ) ) | 
						
							| 9 |  | eqimss | ⊢ ( 𝑧  =  𝐴  →  𝑧  ⊆  𝐴 ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝐴  ∈  On  →  ( 𝑧  =  𝐴  →  𝑧  ⊆  𝐴 ) ) | 
						
							| 11 | 8 10 | jaod | ⊢ ( 𝐴  ∈  On  →  ( ( 𝑧  ∈  𝐴  ∨  𝑧  =  𝐴 )  →  𝑧  ⊆  𝐴 ) ) | 
						
							| 12 | 7 11 | syl5 | ⊢ ( 𝐴  ∈  On  →  ( 𝑧  ∈  suc  𝐴  →  𝑧  ⊆  𝐴 ) ) | 
						
							| 13 |  | sseq2 | ⊢ ( 𝑤  =  𝐴  →  ( 𝑧  ⊆  𝑤  ↔  𝑧  ⊆  𝐴 ) ) | 
						
							| 14 | 13 | rspcev | ⊢ ( ( 𝐴  ∈  { 𝐴 }  ∧  𝑧  ⊆  𝐴 )  →  ∃ 𝑤  ∈  { 𝐴 } 𝑧  ⊆  𝑤 ) | 
						
							| 15 | 6 12 14 | syl6an | ⊢ ( 𝐴  ∈  On  →  ( 𝑧  ∈  suc  𝐴  →  ∃ 𝑤  ∈  { 𝐴 } 𝑧  ⊆  𝑤 ) ) | 
						
							| 16 | 15 | ralrimiv | ⊢ ( 𝐴  ∈  On  →  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  { 𝐴 } 𝑧  ⊆  𝑤 ) | 
						
							| 17 |  | ssun2 | ⊢ { 𝐴 }  ⊆  ( 𝐴  ∪  { 𝐴 } ) | 
						
							| 18 |  | df-suc | ⊢ suc  𝐴  =  ( 𝐴  ∪  { 𝐴 } ) | 
						
							| 19 | 17 18 | sseqtrri | ⊢ { 𝐴 }  ⊆  suc  𝐴 | 
						
							| 20 | 16 19 | jctil | ⊢ ( 𝐴  ∈  On  →  ( { 𝐴 }  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  { 𝐴 } 𝑧  ⊆  𝑤 ) ) | 
						
							| 21 |  | snex | ⊢ { 𝐴 }  ∈  V | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑦  =  { 𝐴 }  →  ( card ‘ 𝑦 )  =  ( card ‘ { 𝐴 } ) ) | 
						
							| 23 | 22 | eqeq2d | ⊢ ( 𝑦  =  { 𝐴 }  →  ( 1o  =  ( card ‘ 𝑦 )  ↔  1o  =  ( card ‘ { 𝐴 } ) ) ) | 
						
							| 24 |  | sseq1 | ⊢ ( 𝑦  =  { 𝐴 }  →  ( 𝑦  ⊆  suc  𝐴  ↔  { 𝐴 }  ⊆  suc  𝐴 ) ) | 
						
							| 25 |  | rexeq | ⊢ ( 𝑦  =  { 𝐴 }  →  ( ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤  ↔  ∃ 𝑤  ∈  { 𝐴 } 𝑧  ⊆  𝑤 ) ) | 
						
							| 26 | 25 | ralbidv | ⊢ ( 𝑦  =  { 𝐴 }  →  ( ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤  ↔  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  { 𝐴 } 𝑧  ⊆  𝑤 ) ) | 
						
							| 27 | 24 26 | anbi12d | ⊢ ( 𝑦  =  { 𝐴 }  →  ( ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 )  ↔  ( { 𝐴 }  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  { 𝐴 } 𝑧  ⊆  𝑤 ) ) ) | 
						
							| 28 | 23 27 | anbi12d | ⊢ ( 𝑦  =  { 𝐴 }  →  ( ( 1o  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) )  ↔  ( 1o  =  ( card ‘ { 𝐴 } )  ∧  ( { 𝐴 }  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  { 𝐴 } 𝑧  ⊆  𝑤 ) ) ) ) | 
						
							| 29 | 21 28 | spcev | ⊢ ( ( 1o  =  ( card ‘ { 𝐴 } )  ∧  ( { 𝐴 }  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  { 𝐴 } 𝑧  ⊆  𝑤 ) )  →  ∃ 𝑦 ( 1o  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) ) | 
						
							| 30 | 5 20 29 | syl2anc | ⊢ ( 𝐴  ∈  On  →  ∃ 𝑦 ( 1o  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) ) | 
						
							| 31 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 32 |  | eqeq1 | ⊢ ( 𝑥  =  1o  →  ( 𝑥  =  ( card ‘ 𝑦 )  ↔  1o  =  ( card ‘ 𝑦 ) ) ) | 
						
							| 33 | 32 | anbi1d | ⊢ ( 𝑥  =  1o  →  ( ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) )  ↔  ( 1o  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) ) ) | 
						
							| 34 | 33 | exbidv | ⊢ ( 𝑥  =  1o  →  ( ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) )  ↔  ∃ 𝑦 ( 1o  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) ) ) | 
						
							| 35 | 31 34 | elab | ⊢ ( 1o  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) }  ↔  ∃ 𝑦 ( 1o  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) ) | 
						
							| 36 | 30 35 | sylibr | ⊢ ( 𝐴  ∈  On  →  1o  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } ) | 
						
							| 37 |  | el1o | ⊢ ( 𝑣  ∈  1o  ↔  𝑣  =  ∅ ) | 
						
							| 38 |  | eqcom | ⊢ ( ∅  =  ( card ‘ 𝑦 )  ↔  ( card ‘ 𝑦 )  =  ∅ ) | 
						
							| 39 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 40 |  | onssnum | ⊢ ( ( 𝑦  ∈  V  ∧  𝑦  ⊆  On )  →  𝑦  ∈  dom  card ) | 
						
							| 41 | 39 40 | mpan | ⊢ ( 𝑦  ⊆  On  →  𝑦  ∈  dom  card ) | 
						
							| 42 |  | cardnueq0 | ⊢ ( 𝑦  ∈  dom  card  →  ( ( card ‘ 𝑦 )  =  ∅  ↔  𝑦  =  ∅ ) ) | 
						
							| 43 | 41 42 | syl | ⊢ ( 𝑦  ⊆  On  →  ( ( card ‘ 𝑦 )  =  ∅  ↔  𝑦  =  ∅ ) ) | 
						
							| 44 | 38 43 | bitrid | ⊢ ( 𝑦  ⊆  On  →  ( ∅  =  ( card ‘ 𝑦 )  ↔  𝑦  =  ∅ ) ) | 
						
							| 45 | 44 | biimpa | ⊢ ( ( 𝑦  ⊆  On  ∧  ∅  =  ( card ‘ 𝑦 ) )  →  𝑦  =  ∅ ) | 
						
							| 46 |  | rex0 | ⊢ ¬  ∃ 𝑤  ∈  ∅ 𝑧  ⊆  𝑤 | 
						
							| 47 | 46 | a1i | ⊢ ( 𝑧  ∈  suc  𝐴  →  ¬  ∃ 𝑤  ∈  ∅ 𝑧  ⊆  𝑤 ) | 
						
							| 48 | 47 | nrex | ⊢ ¬  ∃ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  ∅ 𝑧  ⊆  𝑤 | 
						
							| 49 |  | nsuceq0 | ⊢ suc  𝐴  ≠  ∅ | 
						
							| 50 |  | r19.2z | ⊢ ( ( suc  𝐴  ≠  ∅  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  ∅ 𝑧  ⊆  𝑤 )  →  ∃ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  ∅ 𝑧  ⊆  𝑤 ) | 
						
							| 51 | 49 50 | mpan | ⊢ ( ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  ∅ 𝑧  ⊆  𝑤  →  ∃ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  ∅ 𝑧  ⊆  𝑤 ) | 
						
							| 52 | 48 51 | mto | ⊢ ¬  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  ∅ 𝑧  ⊆  𝑤 | 
						
							| 53 |  | rexeq | ⊢ ( 𝑦  =  ∅  →  ( ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤  ↔  ∃ 𝑤  ∈  ∅ 𝑧  ⊆  𝑤 ) ) | 
						
							| 54 | 53 | ralbidv | ⊢ ( 𝑦  =  ∅  →  ( ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤  ↔  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  ∅ 𝑧  ⊆  𝑤 ) ) | 
						
							| 55 | 52 54 | mtbiri | ⊢ ( 𝑦  =  ∅  →  ¬  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) | 
						
							| 56 | 45 55 | syl | ⊢ ( ( 𝑦  ⊆  On  ∧  ∅  =  ( card ‘ 𝑦 ) )  →  ¬  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) | 
						
							| 57 | 56 | intnand | ⊢ ( ( 𝑦  ⊆  On  ∧  ∅  =  ( card ‘ 𝑦 ) )  →  ¬  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) | 
						
							| 58 |  | imnan | ⊢ ( ( ( 𝑦  ⊆  On  ∧  ∅  =  ( card ‘ 𝑦 ) )  →  ¬  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) )  ↔  ¬  ( ( 𝑦  ⊆  On  ∧  ∅  =  ( card ‘ 𝑦 ) )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) ) | 
						
							| 59 | 57 58 | mpbi | ⊢ ¬  ( ( 𝑦  ⊆  On  ∧  ∅  =  ( card ‘ 𝑦 ) )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) | 
						
							| 60 |  | onsuc | ⊢ ( 𝐴  ∈  On  →  suc  𝐴  ∈  On ) | 
						
							| 61 |  | onss | ⊢ ( suc  𝐴  ∈  On  →  suc  𝐴  ⊆  On ) | 
						
							| 62 |  | sstr | ⊢ ( ( 𝑦  ⊆  suc  𝐴  ∧  suc  𝐴  ⊆  On )  →  𝑦  ⊆  On ) | 
						
							| 63 | 61 62 | sylan2 | ⊢ ( ( 𝑦  ⊆  suc  𝐴  ∧  suc  𝐴  ∈  On )  →  𝑦  ⊆  On ) | 
						
							| 64 | 60 63 | sylan2 | ⊢ ( ( 𝑦  ⊆  suc  𝐴  ∧  𝐴  ∈  On )  →  𝑦  ⊆  On ) | 
						
							| 65 | 64 | ancoms | ⊢ ( ( 𝐴  ∈  On  ∧  𝑦  ⊆  suc  𝐴 )  →  𝑦  ⊆  On ) | 
						
							| 66 | 65 | adantrr | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) )  →  𝑦  ⊆  On ) | 
						
							| 67 | 66 | 3adant2 | ⊢ ( ( 𝐴  ∈  On  ∧  ∅  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) )  →  𝑦  ⊆  On ) | 
						
							| 68 |  | simp2 | ⊢ ( ( 𝐴  ∈  On  ∧  ∅  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) )  →  ∅  =  ( card ‘ 𝑦 ) ) | 
						
							| 69 |  | simp3 | ⊢ ( ( 𝐴  ∈  On  ∧  ∅  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) )  →  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) | 
						
							| 70 | 67 68 69 | jca31 | ⊢ ( ( 𝐴  ∈  On  ∧  ∅  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) )  →  ( ( 𝑦  ⊆  On  ∧  ∅  =  ( card ‘ 𝑦 ) )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) ) | 
						
							| 71 | 70 | 3expib | ⊢ ( 𝐴  ∈  On  →  ( ( ∅  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) )  →  ( ( 𝑦  ⊆  On  ∧  ∅  =  ( card ‘ 𝑦 ) )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) ) ) | 
						
							| 72 | 59 71 | mtoi | ⊢ ( 𝐴  ∈  On  →  ¬  ( ∅  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) ) | 
						
							| 73 | 72 | nexdv | ⊢ ( 𝐴  ∈  On  →  ¬  ∃ 𝑦 ( ∅  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) ) | 
						
							| 74 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 75 |  | eqeq1 | ⊢ ( 𝑥  =  ∅  →  ( 𝑥  =  ( card ‘ 𝑦 )  ↔  ∅  =  ( card ‘ 𝑦 ) ) ) | 
						
							| 76 | 75 | anbi1d | ⊢ ( 𝑥  =  ∅  →  ( ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) )  ↔  ( ∅  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) ) ) | 
						
							| 77 | 76 | exbidv | ⊢ ( 𝑥  =  ∅  →  ( ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) )  ↔  ∃ 𝑦 ( ∅  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) ) ) | 
						
							| 78 | 74 77 | elab | ⊢ ( ∅  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) }  ↔  ∃ 𝑦 ( ∅  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) ) | 
						
							| 79 | 73 78 | sylnibr | ⊢ ( 𝐴  ∈  On  →  ¬  ∅  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } ) | 
						
							| 80 | 79 | adantr | ⊢ ( ( 𝐴  ∈  On  ∧  𝑣  =  ∅ )  →  ¬  ∅  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } ) | 
						
							| 81 |  | eleq1 | ⊢ ( 𝑣  =  ∅  →  ( 𝑣  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) }  ↔  ∅  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } ) ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( 𝐴  ∈  On  ∧  𝑣  =  ∅ )  →  ( 𝑣  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) }  ↔  ∅  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } ) ) | 
						
							| 83 | 80 82 | mtbird | ⊢ ( ( 𝐴  ∈  On  ∧  𝑣  =  ∅ )  →  ¬  𝑣  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } ) | 
						
							| 84 | 37 83 | sylan2b | ⊢ ( ( 𝐴  ∈  On  ∧  𝑣  ∈  1o )  →  ¬  𝑣  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } ) | 
						
							| 85 | 84 | ralrimiva | ⊢ ( 𝐴  ∈  On  →  ∀ 𝑣  ∈  1o ¬  𝑣  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } ) | 
						
							| 86 |  | cardon | ⊢ ( card ‘ 𝑦 )  ∈  On | 
						
							| 87 |  | eleq1 | ⊢ ( 𝑥  =  ( card ‘ 𝑦 )  →  ( 𝑥  ∈  On  ↔  ( card ‘ 𝑦 )  ∈  On ) ) | 
						
							| 88 | 86 87 | mpbiri | ⊢ ( 𝑥  =  ( card ‘ 𝑦 )  →  𝑥  ∈  On ) | 
						
							| 89 | 88 | adantr | ⊢ ( ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) )  →  𝑥  ∈  On ) | 
						
							| 90 | 89 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) )  →  𝑥  ∈  On ) | 
						
							| 91 | 90 | abssi | ⊢ { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) }  ⊆  On | 
						
							| 92 |  | oneqmini | ⊢ ( { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) }  ⊆  On  →  ( ( 1o  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) }  ∧  ∀ 𝑣  ∈  1o ¬  𝑣  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } )  →  1o  =  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } ) ) | 
						
							| 93 | 91 92 | ax-mp | ⊢ ( ( 1o  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) }  ∧  ∀ 𝑣  ∈  1o ¬  𝑣  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } )  →  1o  =  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } ) | 
						
							| 94 | 36 85 93 | syl2anc | ⊢ ( 𝐴  ∈  On  →  1o  =  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  suc  𝐴  ∧  ∀ 𝑧  ∈  suc  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } ) | 
						
							| 95 | 3 94 | eqtr4d | ⊢ ( 𝐴  ∈  On  →  ( cf ‘ suc  𝐴 )  =  1o ) |