| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cfval | ⊢ ( 𝐴  ∈  On  →  ( cf ‘ 𝐴 )  =  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } ) | 
						
							| 2 |  | dfss3 | ⊢ ( 𝐴  ⊆  ∪  𝑦  ↔  ∀ 𝑧  ∈  𝐴 𝑧  ∈  ∪  𝑦 ) | 
						
							| 3 |  | ssel | ⊢ ( 𝑦  ⊆  𝐴  →  ( 𝑤  ∈  𝑦  →  𝑤  ∈  𝐴 ) ) | 
						
							| 4 |  | onelon | ⊢ ( ( 𝐴  ∈  On  ∧  𝑤  ∈  𝐴 )  →  𝑤  ∈  On ) | 
						
							| 5 | 4 | ex | ⊢ ( 𝐴  ∈  On  →  ( 𝑤  ∈  𝐴  →  𝑤  ∈  On ) ) | 
						
							| 6 | 3 5 | sylan9r | ⊢ ( ( 𝐴  ∈  On  ∧  𝑦  ⊆  𝐴 )  →  ( 𝑤  ∈  𝑦  →  𝑤  ∈  On ) ) | 
						
							| 7 |  | onelss | ⊢ ( 𝑤  ∈  On  →  ( 𝑧  ∈  𝑤  →  𝑧  ⊆  𝑤 ) ) | 
						
							| 8 | 6 7 | syl6 | ⊢ ( ( 𝐴  ∈  On  ∧  𝑦  ⊆  𝐴 )  →  ( 𝑤  ∈  𝑦  →  ( 𝑧  ∈  𝑤  →  𝑧  ⊆  𝑤 ) ) ) | 
						
							| 9 | 8 | imdistand | ⊢ ( ( 𝐴  ∈  On  ∧  𝑦  ⊆  𝐴 )  →  ( ( 𝑤  ∈  𝑦  ∧  𝑧  ∈  𝑤 )  →  ( 𝑤  ∈  𝑦  ∧  𝑧  ⊆  𝑤 ) ) ) | 
						
							| 10 | 9 | ancomsd | ⊢ ( ( 𝐴  ∈  On  ∧  𝑦  ⊆  𝐴 )  →  ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑦 )  →  ( 𝑤  ∈  𝑦  ∧  𝑧  ⊆  𝑤 ) ) ) | 
						
							| 11 | 10 | eximdv | ⊢ ( ( 𝐴  ∈  On  ∧  𝑦  ⊆  𝐴 )  →  ( ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑦 )  →  ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  𝑧  ⊆  𝑤 ) ) ) | 
						
							| 12 |  | eluni | ⊢ ( 𝑧  ∈  ∪  𝑦  ↔  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) | 
						
							| 13 |  | df-rex | ⊢ ( ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤  ↔  ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  𝑧  ⊆  𝑤 ) ) | 
						
							| 14 | 11 12 13 | 3imtr4g | ⊢ ( ( 𝐴  ∈  On  ∧  𝑦  ⊆  𝐴 )  →  ( 𝑧  ∈  ∪  𝑦  →  ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) | 
						
							| 15 | 14 | ralimdv | ⊢ ( ( 𝐴  ∈  On  ∧  𝑦  ⊆  𝐴 )  →  ( ∀ 𝑧  ∈  𝐴 𝑧  ∈  ∪  𝑦  →  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) | 
						
							| 16 | 2 15 | biimtrid | ⊢ ( ( 𝐴  ∈  On  ∧  𝑦  ⊆  𝐴 )  →  ( 𝐴  ⊆  ∪  𝑦  →  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) | 
						
							| 17 | 16 | imdistanda | ⊢ ( 𝐴  ∈  On  →  ( ( 𝑦  ⊆  𝐴  ∧  𝐴  ⊆  ∪  𝑦 )  →  ( 𝑦  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) ) | 
						
							| 18 | 17 | anim2d | ⊢ ( 𝐴  ∈  On  →  ( ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  𝐴  ⊆  ∪  𝑦 ) )  →  ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) ) ) | 
						
							| 19 | 18 | eximdv | ⊢ ( 𝐴  ∈  On  →  ( ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  𝐴  ⊆  ∪  𝑦 ) )  →  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) ) ) | 
						
							| 20 | 19 | ss2abdv | ⊢ ( 𝐴  ∈  On  →  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  𝐴  ⊆  ∪  𝑦 ) ) }  ⊆  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } ) | 
						
							| 21 |  | intss | ⊢ ( { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  𝐴  ⊆  ∪  𝑦 ) ) }  ⊆  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) }  →  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) }  ⊆  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  𝐴  ⊆  ∪  𝑦 ) ) } ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝐴  ∈  On  →  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) }  ⊆  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  𝐴  ⊆  ∪  𝑦 ) ) } ) | 
						
							| 23 | 1 22 | eqsstrd | ⊢ ( 𝐴  ∈  On  →  ( cf ‘ 𝐴 )  ⊆  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  𝐴  ⊆  ∪  𝑦 ) ) } ) | 
						
							| 24 |  | cff | ⊢ cf : On ⟶ On | 
						
							| 25 | 24 | fdmi | ⊢ dom  cf  =  On | 
						
							| 26 | 25 | eleq2i | ⊢ ( 𝐴  ∈  dom  cf  ↔  𝐴  ∈  On ) | 
						
							| 27 |  | ndmfv | ⊢ ( ¬  𝐴  ∈  dom  cf  →  ( cf ‘ 𝐴 )  =  ∅ ) | 
						
							| 28 | 26 27 | sylnbir | ⊢ ( ¬  𝐴  ∈  On  →  ( cf ‘ 𝐴 )  =  ∅ ) | 
						
							| 29 |  | 0ss | ⊢ ∅  ⊆  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  𝐴  ⊆  ∪  𝑦 ) ) } | 
						
							| 30 | 28 29 | eqsstrdi | ⊢ ( ¬  𝐴  ∈  On  →  ( cf ‘ 𝐴 )  ⊆  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  𝐴  ⊆  ∪  𝑦 ) ) } ) | 
						
							| 31 | 23 30 | pm2.61i | ⊢ ( cf ‘ 𝐴 )  ⊆  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  𝐴  ⊆  ∪  𝑦 ) ) } |