| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cflem | ⊢ ( 𝐴  ∈  On  →  ∃ 𝑥 ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) ) | 
						
							| 2 |  | intexab | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) )  ↔  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) }  ∈  V ) | 
						
							| 3 | 1 2 | sylib | ⊢ ( 𝐴  ∈  On  →  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) }  ∈  V ) | 
						
							| 4 |  | sseq2 | ⊢ ( 𝑣  =  𝐴  →  ( 𝑦  ⊆  𝑣  ↔  𝑦  ⊆  𝐴 ) ) | 
						
							| 5 |  | raleq | ⊢ ( 𝑣  =  𝐴  →  ( ∀ 𝑧  ∈  𝑣 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤  ↔  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) | 
						
							| 6 | 4 5 | anbi12d | ⊢ ( 𝑣  =  𝐴  →  ( ( 𝑦  ⊆  𝑣  ∧  ∀ 𝑧  ∈  𝑣 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 )  ↔  ( 𝑦  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) ) | 
						
							| 7 | 6 | anbi2d | ⊢ ( 𝑣  =  𝐴  →  ( ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝑣  ∧  ∀ 𝑧  ∈  𝑣 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) )  ↔  ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) ) ) | 
						
							| 8 | 7 | exbidv | ⊢ ( 𝑣  =  𝐴  →  ( ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝑣  ∧  ∀ 𝑧  ∈  𝑣 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) )  ↔  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) ) ) | 
						
							| 9 | 8 | abbidv | ⊢ ( 𝑣  =  𝐴  →  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝑣  ∧  ∀ 𝑧  ∈  𝑣 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) }  =  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } ) | 
						
							| 10 | 9 | inteqd | ⊢ ( 𝑣  =  𝐴  →  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝑣  ∧  ∀ 𝑧  ∈  𝑣 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) }  =  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } ) | 
						
							| 11 |  | df-cf | ⊢ cf  =  ( 𝑣  ∈  On  ↦  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝑣  ∧  ∀ 𝑧  ∈  𝑣 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } ) | 
						
							| 12 | 10 11 | fvmptg | ⊢ ( ( 𝐴  ∈  On  ∧  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) }  ∈  V )  →  ( cf ‘ 𝐴 )  =  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } ) | 
						
							| 13 | 3 12 | mpdan | ⊢ ( 𝐴  ∈  On  →  ( cf ‘ 𝐴 )  =  ∩  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ( card ‘ 𝑦 )  ∧  ( 𝑦  ⊆  𝐴  ∧  ∀ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝑦 𝑧  ⊆  𝑤 ) ) } ) |