Step |
Hyp |
Ref |
Expression |
1 |
|
cfval |
⊢ ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) = ∩ { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) } ) |
2 |
|
fvex |
⊢ ( card ‘ 𝑥 ) ∈ V |
3 |
2
|
dfiin2 |
⊢ ∩ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } ( card ‘ 𝑥 ) = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } 𝑦 = ( card ‘ 𝑥 ) } |
4 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } 𝑦 = ( card ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } ∧ 𝑦 = ( card ‘ 𝑥 ) ) ) |
5 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) |
6 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
7 |
6
|
anbi1i |
⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) |
8 |
5 7
|
bitri |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } ↔ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) |
9 |
8
|
anbi2ci |
⊢ ( ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } ∧ 𝑦 = ( card ‘ 𝑥 ) ) ↔ ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) ) |
10 |
9
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } ∧ 𝑦 = ( card ‘ 𝑥 ) ) ↔ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) ) |
11 |
4 10
|
bitri |
⊢ ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } 𝑦 = ( card ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) ) |
12 |
11
|
abbii |
⊢ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } 𝑦 = ( card ‘ 𝑥 ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) } |
13 |
12
|
inteqi |
⊢ ∩ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } 𝑦 = ( card ‘ 𝑥 ) } = ∩ { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) } |
14 |
3 13
|
eqtr2i |
⊢ ∩ { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) } = ∩ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } ( card ‘ 𝑥 ) |
15 |
1 14
|
eqtrdi |
⊢ ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) = ∩ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 } ( card ‘ 𝑥 ) ) |