Metamath Proof Explorer


Theorem cgr3id

Description: Reflexivity law for three-place congruence. (Contributed by Thierry Arnoux, 28-Apr-2019)

Ref Expression
Hypotheses tgcgrxfr.p 𝑃 = ( Base ‘ 𝐺 )
tgcgrxfr.m = ( dist ‘ 𝐺 )
tgcgrxfr.i 𝐼 = ( Itv ‘ 𝐺 )
tgcgrxfr.r = ( cgrG ‘ 𝐺 )
tgcgrxfr.g ( 𝜑𝐺 ∈ TarskiG )
tgbtwnxfr.a ( 𝜑𝐴𝑃 )
tgbtwnxfr.b ( 𝜑𝐵𝑃 )
tgbtwnxfr.c ( 𝜑𝐶𝑃 )
Assertion cgr3id ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐴 𝐵 𝐶 ”⟩ )

Proof

Step Hyp Ref Expression
1 tgcgrxfr.p 𝑃 = ( Base ‘ 𝐺 )
2 tgcgrxfr.m = ( dist ‘ 𝐺 )
3 tgcgrxfr.i 𝐼 = ( Itv ‘ 𝐺 )
4 tgcgrxfr.r = ( cgrG ‘ 𝐺 )
5 tgcgrxfr.g ( 𝜑𝐺 ∈ TarskiG )
6 tgbtwnxfr.a ( 𝜑𝐴𝑃 )
7 tgbtwnxfr.b ( 𝜑𝐵𝑃 )
8 tgbtwnxfr.c ( 𝜑𝐶𝑃 )
9 eqidd ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐴 𝐵 ) )
10 eqidd ( 𝜑 → ( 𝐵 𝐶 ) = ( 𝐵 𝐶 ) )
11 eqidd ( 𝜑 → ( 𝐶 𝐴 ) = ( 𝐶 𝐴 ) )
12 1 2 4 5 6 7 8 6 7 8 9 10 11 trgcgr ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐴 𝐵 𝐶 ”⟩ )