Description: Reflexivity law for three-place congruence. (Contributed by Thierry Arnoux, 28-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgcgrxfr.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
tgcgrxfr.m | ⊢ − = ( dist ‘ 𝐺 ) | ||
tgcgrxfr.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | ||
tgcgrxfr.r | ⊢ ∼ = ( cgrG ‘ 𝐺 ) | ||
tgcgrxfr.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | ||
tgbtwnxfr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) | ||
tgbtwnxfr.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) | ||
tgbtwnxfr.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) | ||
Assertion | cgr3id | ⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∼ 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcgrxfr.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
2 | tgcgrxfr.m | ⊢ − = ( dist ‘ 𝐺 ) | |
3 | tgcgrxfr.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | |
4 | tgcgrxfr.r | ⊢ ∼ = ( cgrG ‘ 𝐺 ) | |
5 | tgcgrxfr.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | |
6 | tgbtwnxfr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) | |
7 | tgbtwnxfr.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) | |
8 | tgbtwnxfr.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) | |
9 | eqidd | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
10 | eqidd | ⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐵 − 𝐶 ) ) | |
11 | eqidd | ⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) = ( 𝐶 − 𝐴 ) ) | |
12 | 1 2 4 5 6 7 8 6 7 8 9 10 11 | trgcgr | ⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∼ 〈“ 𝐴 𝐵 𝐶 ”〉 ) |