Database
ELEMENTARY GEOMETRY
Tarskian Geometry
Congruence of a series of points
cgr3simp1
Metamath Proof Explorer
Description: Deduce segment congruence from a triangle congruence. This is a
portion of the theorem that corresponding parts of congruent triangles
are congruent (CPCTC), focusing on a specific segment. (Contributed by Thierry Arnoux , 27-Apr-2019)
Ref
Expression
Hypotheses
tgcgrxfr.p
⊢ 𝑃 = ( Base ‘ 𝐺 )
tgcgrxfr.m
⊢ − = ( dist ‘ 𝐺 )
tgcgrxfr.i
⊢ 𝐼 = ( Itv ‘ 𝐺 )
tgcgrxfr.r
⊢ ∼ = ( cgrG ‘ 𝐺 )
tgcgrxfr.g
⊢ ( 𝜑 → 𝐺 ∈ TarskiG )
tgbtwnxfr.a
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 )
tgbtwnxfr.b
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 )
tgbtwnxfr.c
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 )
tgbtwnxfr.d
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 )
tgbtwnxfr.e
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 )
tgbtwnxfr.f
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 )
tgbtwnxfr.2
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∼ 〈“ 𝐷 𝐸 𝐹 ”〉 )
Assertion
cgr3simp1
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) )
Proof
Step
Hyp
Ref
Expression
1
tgcgrxfr.p
⊢ 𝑃 = ( Base ‘ 𝐺 )
2
tgcgrxfr.m
⊢ − = ( dist ‘ 𝐺 )
3
tgcgrxfr.i
⊢ 𝐼 = ( Itv ‘ 𝐺 )
4
tgcgrxfr.r
⊢ ∼ = ( cgrG ‘ 𝐺 )
5
tgcgrxfr.g
⊢ ( 𝜑 → 𝐺 ∈ TarskiG )
6
tgbtwnxfr.a
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 )
7
tgbtwnxfr.b
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 )
8
tgbtwnxfr.c
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 )
9
tgbtwnxfr.d
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 )
10
tgbtwnxfr.e
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 )
11
tgbtwnxfr.f
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 )
12
tgbtwnxfr.2
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∼ 〈“ 𝐷 𝐸 𝐹 ”〉 )
13
1 2 4 5 6 7 8 9 10 11
trgcgrg
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∼ 〈“ 𝐷 𝐸 𝐹 ”〉 ↔ ( ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ∧ ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ∧ ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) ) )
14
12 13
mpbid
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ∧ ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ∧ ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) )
15
14
simp1d
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) )