| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tgcgrxfr.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							tgcgrxfr.m | 
							⊢  −   =  ( dist ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							tgcgrxfr.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							tgcgrxfr.r | 
							⊢  ∼   =  ( cgrG ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							tgcgrxfr.g | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 6 | 
							
								
							 | 
							tgbtwnxfr.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							tgbtwnxfr.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑃 )  | 
						
						
							| 8 | 
							
								
							 | 
							tgbtwnxfr.c | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑃 )  | 
						
						
							| 9 | 
							
								
							 | 
							tgbtwnxfr.d | 
							⊢ ( 𝜑  →  𝐷  ∈  𝑃 )  | 
						
						
							| 10 | 
							
								
							 | 
							tgbtwnxfr.e | 
							⊢ ( 𝜑  →  𝐸  ∈  𝑃 )  | 
						
						
							| 11 | 
							
								
							 | 
							tgbtwnxfr.f | 
							⊢ ( 𝜑  →  𝐹  ∈  𝑃 )  | 
						
						
							| 12 | 
							
								
							 | 
							tgbtwnxfr.2 | 
							⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∼  〈“ 𝐷 𝐸 𝐹 ”〉 )  | 
						
						
							| 13 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12
							 | 
							cgr3simp3 | 
							⊢ ( 𝜑  →  ( 𝐶  −  𝐴 )  =  ( 𝐹  −  𝐷 ) )  | 
						
						
							| 14 | 
							
								1 2 3 5 8 6 11 9 13
							 | 
							tgcgrcomlr | 
							⊢ ( 𝜑  →  ( 𝐴  −  𝐶 )  =  ( 𝐷  −  𝐹 ) )  | 
						
						
							| 15 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12
							 | 
							cgr3simp2 | 
							⊢ ( 𝜑  →  ( 𝐵  −  𝐶 )  =  ( 𝐸  −  𝐹 ) )  | 
						
						
							| 16 | 
							
								1 2 3 5 7 8 10 11 15
							 | 
							tgcgrcomlr | 
							⊢ ( 𝜑  →  ( 𝐶  −  𝐵 )  =  ( 𝐹  −  𝐸 ) )  | 
						
						
							| 17 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12
							 | 
							cgr3simp1 | 
							⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  =  ( 𝐷  −  𝐸 ) )  | 
						
						
							| 18 | 
							
								1 2 3 5 6 7 9 10 17
							 | 
							tgcgrcomlr | 
							⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  =  ( 𝐸  −  𝐷 ) )  | 
						
						
							| 19 | 
							
								1 2 4 5 6 8 7 9 11 10 14 16 18
							 | 
							trgcgr | 
							⊢ ( 𝜑  →  〈“ 𝐴 𝐶 𝐵 ”〉  ∼  〈“ 𝐷 𝐹 𝐸 ”〉 )  |