| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cgraid.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							cgraid.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							cgraid.g | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 4 | 
							
								
							 | 
							cgraid.k | 
							⊢ 𝐾  =  ( hlG ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							cgraid.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							cgraid.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							cgraid.c | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑃 )  | 
						
						
							| 8 | 
							
								
							 | 
							cgracom.d | 
							⊢ ( 𝜑  →  𝐷  ∈  𝑃 )  | 
						
						
							| 9 | 
							
								
							 | 
							cgracom.e | 
							⊢ ( 𝜑  →  𝐸  ∈  𝑃 )  | 
						
						
							| 10 | 
							
								
							 | 
							cgracom.f | 
							⊢ ( 𝜑  →  𝐹  ∈  𝑃 )  | 
						
						
							| 11 | 
							
								
							 | 
							cgracom.1 | 
							⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( cgrG ‘ 𝐺 )  =  ( cgrG ‘ 𝐺 )  | 
						
						
							| 14 | 
							
								3
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  𝐺  ∈  TarskiG )  | 
						
						
							| 15 | 
							
								8
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  𝐷  ∈  𝑃 )  | 
						
						
							| 16 | 
							
								9
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  𝐸  ∈  𝑃 )  | 
						
						
							| 17 | 
							
								10
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  𝐹  ∈  𝑃 )  | 
						
						
							| 18 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  𝑥  ∈  𝑃 )  | 
						
						
							| 19 | 
							
								6
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  𝐵  ∈  𝑃 )  | 
						
						
							| 20 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  𝑦  ∈  𝑃 )  | 
						
						
							| 21 | 
							
								
							 | 
							simprlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							eqcomd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) )  | 
						
						
							| 23 | 
							
								1 12 2 14 16 15 19 18 22
							 | 
							tgcgrcomlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  ( 𝐷 ( dist ‘ 𝐺 ) 𝐸 )  =  ( 𝑥 ( dist ‘ 𝐺 ) 𝐵 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simprrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							eqcomd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) )  | 
						
						
							| 26 | 
							
								5
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  𝐴  ∈  𝑃 )  | 
						
						
							| 27 | 
							
								7
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  𝐶  ∈  𝑃 )  | 
						
						
							| 28 | 
							
								11
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 )  | 
						
						
							| 29 | 
							
								
							 | 
							simprll | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴 )  | 
						
						
							| 30 | 
							
								
							 | 
							simprrl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 )  | 
						
						
							| 31 | 
							
								1 2 4 14 26 19 27 15 16 17 28 18 12 20 29 30 21 24
							 | 
							cgracgr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐹 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							eqcomd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  ( 𝐷 ( dist ‘ 𝐺 ) 𝐹 )  =  ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) )  | 
						
						
							| 33 | 
							
								1 12 2 14 15 17 18 20 32
							 | 
							tgcgrcomlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  ( 𝐹 ( dist ‘ 𝐺 ) 𝐷 )  =  ( 𝑦 ( dist ‘ 𝐺 ) 𝑥 ) )  | 
						
						
							| 34 | 
							
								1 12 13 14 15 16 17 18 19 20 23 25 33
							 | 
							trgcgr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝐵 𝑦 ”〉 )  | 
						
						
							| 35 | 
							
								34 29 30
							 | 
							3jca | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  →  ( 〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝐵 𝑦 ”〉  ∧  𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ) )  | 
						
						
							| 36 | 
							
								1 2 4 3 5 6 7 8 9 10 11
							 | 
							cgrane1 | 
							⊢ ( 𝜑  →  𝐴  ≠  𝐵 )  | 
						
						
							| 37 | 
							
								1 2 4 3 5 6 7 8 9 10 11
							 | 
							cgrane3 | 
							⊢ ( 𝜑  →  𝐸  ≠  𝐷 )  | 
						
						
							| 38 | 
							
								1 2 4 6 9 8 3 5 12 36 37
							 | 
							hlcgrex | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑃 ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) ) )  | 
						
						
							| 39 | 
							
								1 2 4 3 5 6 7 8 9 10 11
							 | 
							cgrane2 | 
							⊢ ( 𝜑  →  𝐵  ≠  𝐶 )  | 
						
						
							| 40 | 
							
								39
							 | 
							necomd | 
							⊢ ( 𝜑  →  𝐶  ≠  𝐵 )  | 
						
						
							| 41 | 
							
								1 2 4 3 5 6 7 8 9 10 11
							 | 
							cgrane4 | 
							⊢ ( 𝜑  →  𝐸  ≠  𝐹 )  | 
						
						
							| 42 | 
							
								1 2 4 6 9 10 3 7 12 40 41
							 | 
							hlcgrex | 
							⊢ ( 𝜑  →  ∃ 𝑦  ∈  𝑃 ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							reeanv | 
							⊢ ( ∃ 𝑥  ∈  𝑃 ∃ 𝑦  ∈  𝑃 ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) )  ↔  ( ∃ 𝑥  ∈  𝑃 ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ∃ 𝑦  ∈  𝑃 ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  | 
						
						
							| 44 | 
							
								38 42 43
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑃 ∃ 𝑦  ∈  𝑃 ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐷 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐸 ( dist ‘ 𝐺 ) 𝐹 ) ) ) )  | 
						
						
							| 45 | 
							
								35 44
							 | 
							reximddv2 | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑃 ∃ 𝑦  ∈  𝑃 ( 〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝐵 𝑦 ”〉  ∧  𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ) )  | 
						
						
							| 46 | 
							
								1 2 4 3 8 9 10 5 6 7
							 | 
							iscgra | 
							⊢ ( 𝜑  →  ( 〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ↔  ∃ 𝑥  ∈  𝑃 ∃ 𝑦  ∈  𝑃 ( 〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝐵 𝑦 ”〉  ∧  𝑥 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  𝑦 ( 𝐾 ‘ 𝐵 ) 𝐶 ) ) )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							mpbird | 
							⊢ ( 𝜑  →  〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 )  |