| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cgraid.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							cgraid.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							cgraid.g | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 4 | 
							
								
							 | 
							cgraid.k | 
							⊢ 𝐾  =  ( hlG ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							cgraid.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							cgraid.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							cgraid.c | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑃 )  | 
						
						
							| 8 | 
							
								
							 | 
							cgraid.1 | 
							⊢ ( 𝜑  →  𝐴  ≠  𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							cgraid.2 | 
							⊢ ( 𝜑  →  𝐵  ≠  𝐶 )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( cgrG ‘ 𝐺 )  =  ( cgrG ‘ 𝐺 )  | 
						
						
							| 12 | 
							
								1 10 2 11 3 5 6 7
							 | 
							cgr3id | 
							⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 )  | 
						
						
							| 13 | 
							
								1 2 4 5 5 6 3 8
							 | 
							hlid | 
							⊢ ( 𝜑  →  𝐴 ( 𝐾 ‘ 𝐵 ) 𝐴 )  | 
						
						
							| 14 | 
							
								9
							 | 
							necomd | 
							⊢ ( 𝜑  →  𝐶  ≠  𝐵 )  | 
						
						
							| 15 | 
							
								1 2 4 7 5 6 3 14
							 | 
							hlid | 
							⊢ ( 𝜑  →  𝐶 ( 𝐾 ‘ 𝐵 ) 𝐶 )  | 
						
						
							| 16 | 
							
								1 2 4 3 5 6 7 5 6 7 5 7 12 13 15
							 | 
							iscgrad | 
							⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 )  |