Step |
Hyp |
Ref |
Expression |
1 |
|
cgracol.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
cgracol.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
cgracol.m |
⊢ − = ( dist ‘ 𝐺 ) |
4 |
|
cgracol.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
cgracol.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
6 |
|
cgracol.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
7 |
|
cgracol.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
8 |
|
cgracol.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
9 |
|
cgracol.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
10 |
|
cgracol.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
11 |
|
cgracol.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
12 |
|
cgrancol.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
13 |
|
cgrancol.2 |
⊢ ( 𝜑 → ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐺 ∈ TarskiG ) |
15 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐷 ∈ 𝑃 ) |
16 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐸 ∈ 𝑃 ) |
17 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐹 ∈ 𝑃 ) |
18 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐴 ∈ 𝑃 ) |
19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐵 ∈ 𝑃 ) |
20 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐶 ∈ 𝑃 ) |
21 |
|
eqid |
⊢ ( hlG ‘ 𝐺 ) = ( hlG ‘ 𝐺 ) |
22 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
23 |
1 2 14 21 18 19 20 15 16 17 22
|
cgracom |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
24 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) |
25 |
1 2 3 14 15 16 17 18 19 20 23 12 24
|
cgracol |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
26 |
13 25
|
mtand |
⊢ ( 𝜑 → ¬ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) |