| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cgracol.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
cgracol.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
cgracol.m |
⊢ − = ( dist ‘ 𝐺 ) |
| 4 |
|
cgracol.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
cgracol.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 6 |
|
cgracol.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 7 |
|
cgracol.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 8 |
|
cgracol.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 9 |
|
cgracol.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
| 10 |
|
cgracol.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
| 11 |
|
cgracol.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
| 12 |
|
cgrancol.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 13 |
|
cgrancol.2 |
⊢ ( 𝜑 → ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐺 ∈ TarskiG ) |
| 15 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐷 ∈ 𝑃 ) |
| 16 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐸 ∈ 𝑃 ) |
| 17 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐹 ∈ 𝑃 ) |
| 18 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐴 ∈ 𝑃 ) |
| 19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐵 ∈ 𝑃 ) |
| 20 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐶 ∈ 𝑃 ) |
| 21 |
|
eqid |
⊢ ( hlG ‘ 𝐺 ) = ( hlG ‘ 𝐺 ) |
| 22 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
| 23 |
1 2 14 21 18 19 20 15 16 17 22
|
cgracom |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
| 24 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) |
| 25 |
1 2 3 14 15 16 17 18 19 20 23 12 24
|
cgracol |
⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 26 |
13 25
|
mtand |
⊢ ( 𝜑 → ¬ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) |