Metamath Proof Explorer


Theorem cgrane1

Description: Angles imply inequality. (Contributed by Thierry Arnoux, 1-Aug-2020)

Ref Expression
Hypotheses iscgra.p 𝑃 = ( Base ‘ 𝐺 )
iscgra.i 𝐼 = ( Itv ‘ 𝐺 )
iscgra.k 𝐾 = ( hlG ‘ 𝐺 )
iscgra.g ( 𝜑𝐺 ∈ TarskiG )
iscgra.a ( 𝜑𝐴𝑃 )
iscgra.b ( 𝜑𝐵𝑃 )
iscgra.c ( 𝜑𝐶𝑃 )
iscgra.d ( 𝜑𝐷𝑃 )
iscgra.e ( 𝜑𝐸𝑃 )
iscgra.f ( 𝜑𝐹𝑃 )
cgrahl1.2 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
Assertion cgrane1 ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 iscgra.p 𝑃 = ( Base ‘ 𝐺 )
2 iscgra.i 𝐼 = ( Itv ‘ 𝐺 )
3 iscgra.k 𝐾 = ( hlG ‘ 𝐺 )
4 iscgra.g ( 𝜑𝐺 ∈ TarskiG )
5 iscgra.a ( 𝜑𝐴𝑃 )
6 iscgra.b ( 𝜑𝐵𝑃 )
7 iscgra.c ( 𝜑𝐶𝑃 )
8 iscgra.d ( 𝜑𝐷𝑃 )
9 iscgra.e ( 𝜑𝐸𝑃 )
10 iscgra.f ( 𝜑𝐹𝑃 )
11 cgrahl1.2 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
12 eqid ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 )
13 4 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐺 ∈ TarskiG )
14 simpllr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝑥𝑃 )
15 9 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐸𝑃 )
16 5 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐴𝑃 )
17 6 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐵𝑃 )
18 eqid ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 )
19 7 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐶𝑃 )
20 simplr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝑦𝑃 )
21 simpr1 ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ )
22 1 12 2 18 13 16 17 19 14 15 20 21 cgr3simp1 ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) = ( 𝑥 ( dist ‘ 𝐺 ) 𝐸 ) )
23 22 eqcomd ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → ( 𝑥 ( dist ‘ 𝐺 ) 𝐸 ) = ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) )
24 8 ad3antrrr ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐷𝑃 )
25 simpr2 ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝑥 ( 𝐾𝐸 ) 𝐷 )
26 1 2 3 14 24 15 13 25 hlne1 ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝑥𝐸 )
27 1 12 2 13 14 15 16 17 23 26 tgcgrneq ( ( ( ( 𝜑𝑥𝑃 ) ∧ 𝑦𝑃 ) ∧ ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) → 𝐴𝐵 )
28 1 2 3 4 5 6 7 8 9 10 iscgra ( 𝜑 → ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ ↔ ∃ 𝑥𝑃𝑦𝑃 ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) ) )
29 11 28 mpbid ( 𝜑 → ∃ 𝑥𝑃𝑦𝑃 ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝑥 𝐸 𝑦 ”⟩ ∧ 𝑥 ( 𝐾𝐸 ) 𝐷𝑦 ( 𝐾𝐸 ) 𝐹 ) )
30 27 29 r19.29vva ( 𝜑𝐴𝐵 )