Step |
Hyp |
Ref |
Expression |
1 |
|
cgraid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
cgraid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
cgraid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
4 |
|
cgraid.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
5 |
|
cgraid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
6 |
|
cgraid.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
7 |
|
cgraid.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
8 |
|
cgraid.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
9 |
|
cgraid.2 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
10 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
11 |
|
eqid |
⊢ ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 ) |
12 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 𝐺 ∈ TarskiG ) |
13 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 𝐴 ∈ 𝑃 ) |
14 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 𝐵 ∈ 𝑃 ) |
15 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 𝐶 ∈ 𝑃 ) |
16 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 𝑥 ∈ 𝑃 ) |
17 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 𝑦 ∈ 𝑃 ) |
18 |
|
simprlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) |
19 |
1 10 2 12 14 16 14 13 18
|
tgcgrcomlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝑥 ( dist ‘ 𝐺 ) 𝐵 ) = ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) ) |
20 |
19
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) = ( 𝑥 ( dist ‘ 𝐺 ) 𝐵 ) ) |
21 |
|
simprrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) |
22 |
21
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) ) |
23 |
|
eqid |
⊢ ( LineG ‘ 𝐺 ) = ( LineG ‘ 𝐺 ) |
24 |
|
simprll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ) |
25 |
1 2 4 16 15 14 12 23 24
|
hlln |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 𝑥 ∈ ( 𝐶 ( LineG ‘ 𝐺 ) 𝐵 ) ) |
26 |
25
|
orcd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝑥 ∈ ( 𝐶 ( LineG ‘ 𝐺 ) 𝐵 ) ∨ 𝐶 = 𝐵 ) ) |
27 |
1 23 2 12 15 14 16 26
|
colrot1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝐶 ∈ ( 𝐵 ( LineG ‘ 𝐺 ) 𝑥 ) ∨ 𝐵 = 𝑥 ) ) |
28 |
|
eqid |
⊢ ( ≤G ‘ 𝐺 ) = ( ≤G ‘ 𝐺 ) |
29 |
1 2 4 16 15 14 12
|
ishlg |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ↔ ( 𝑥 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ ( 𝑥 ∈ ( 𝐵 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐵 𝐼 𝑥 ) ) ) ) ) |
30 |
24 29
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝑥 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ ( 𝑥 ∈ ( 𝐵 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐵 𝐼 𝑥 ) ) ) ) |
31 |
30
|
simp3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝑥 ∈ ( 𝐵 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐵 𝐼 𝑥 ) ) ) |
32 |
31
|
orcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝐶 ∈ ( 𝐵 𝐼 𝑥 ) ∨ 𝑥 ∈ ( 𝐵 𝐼 𝐶 ) ) ) |
33 |
|
simprrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ) |
34 |
1 2 4 17 13 14 12
|
ishlg |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ↔ ( 𝑦 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ ( 𝑦 ∈ ( 𝐵 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐵 𝐼 𝑦 ) ) ) ) ) |
35 |
33 34
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝑦 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ ( 𝑦 ∈ ( 𝐵 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐵 𝐼 𝑦 ) ) ) ) |
36 |
35
|
simp3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝑦 ∈ ( 𝐵 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐵 𝐼 𝑦 ) ) ) |
37 |
1 10 2 28 12 14 15 16 14 14 17 13 32 36 22 18
|
tgcgrsub2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝐶 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝐴 ) ) |
38 |
1 10 11 12 14 15 16 14 17 13 22 37 19
|
trgcgr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 〈“ 𝐵 𝐶 𝑥 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐵 𝑦 𝐴 ”〉 ) |
39 |
1 10 2 12 15 17
|
axtgcgrrflx |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝐶 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝐶 ) ) |
40 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 𝐵 ≠ 𝐶 ) |
41 |
1 23 2 12 14 15 16 11 14 17 10 17 13 15 27 38 21 39 40
|
tgfscgr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐴 ( dist ‘ 𝐺 ) 𝐶 ) ) |
42 |
1 10 2 12 16 17 13 15 41
|
tgcgrcomlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝑦 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐴 ) ) |
43 |
42
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 𝐶 ( dist ‘ 𝐺 ) 𝐴 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝑥 ) ) |
44 |
1 10 11 12 13 14 15 16 14 17 20 22 43
|
trgcgr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝐵 𝑦 ”〉 ) |
45 |
44 24 33
|
3jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ 𝑦 ∈ 𝑃 ) ∧ ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝐵 𝑦 ”〉 ∧ 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ) ) |
46 |
9
|
necomd |
⊢ ( 𝜑 → 𝐶 ≠ 𝐵 ) |
47 |
8
|
necomd |
⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
48 |
1 2 4 6 6 5 3 7 10 46 47
|
hlcgrex |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ) |
49 |
1 2 4 6 6 7 3 5 10 8 9
|
hlcgrex |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝑃 ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) |
50 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ↔ ( ∃ 𝑥 ∈ 𝑃 ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ∃ 𝑦 ∈ 𝑃 ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) |
51 |
48 49 50
|
sylanbrc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) ∧ ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ∧ ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ) |
52 |
45 51
|
reximddv2 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝐵 𝑦 ”〉 ∧ 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ) ) |
53 |
1 2 4 3 5 6 7 7 6 5
|
iscgra |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐶 𝐵 𝐴 ”〉 ↔ ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝐵 𝑦 ”〉 ∧ 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 ∧ 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ) ) ) |
54 |
52 53
|
mpbird |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐶 𝐵 𝐴 ”〉 ) |