| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cgraid.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							cgraid.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							cgraid.g | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 4 | 
							
								
							 | 
							cgraid.k | 
							⊢ 𝐾  =  ( hlG ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							cgraid.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							cgraid.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							cgraid.c | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑃 )  | 
						
						
							| 8 | 
							
								
							 | 
							cgraid.1 | 
							⊢ ( 𝜑  →  𝐴  ≠  𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							cgraid.2 | 
							⊢ ( 𝜑  →  𝐵  ≠  𝐶 )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( cgrG ‘ 𝐺 )  =  ( cgrG ‘ 𝐺 )  | 
						
						
							| 12 | 
							
								3
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  𝐺  ∈  TarskiG )  | 
						
						
							| 13 | 
							
								5
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  𝐴  ∈  𝑃 )  | 
						
						
							| 14 | 
							
								6
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  𝐵  ∈  𝑃 )  | 
						
						
							| 15 | 
							
								7
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  𝐶  ∈  𝑃 )  | 
						
						
							| 16 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  𝑥  ∈  𝑃 )  | 
						
						
							| 17 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  𝑦  ∈  𝑃 )  | 
						
						
							| 18 | 
							
								
							 | 
							simprlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  | 
						
						
							| 19 | 
							
								1 10 2 12 14 16 14 13 18
							 | 
							tgcgrcomlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝑥 ( dist ‘ 𝐺 ) 𝐵 )  =  ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							eqcomd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 )  =  ( 𝑥 ( dist ‘ 𝐺 ) 𝐵 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simprrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							eqcomd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							⊢ ( LineG ‘ 𝐺 )  =  ( LineG ‘ 𝐺 )  | 
						
						
							| 24 | 
							
								
							 | 
							simprll | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶 )  | 
						
						
							| 25 | 
							
								1 2 4 16 15 14 12 23 24
							 | 
							hlln | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  𝑥  ∈  ( 𝐶 ( LineG ‘ 𝐺 ) 𝐵 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							orcd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝑥  ∈  ( 𝐶 ( LineG ‘ 𝐺 ) 𝐵 )  ∨  𝐶  =  𝐵 ) )  | 
						
						
							| 27 | 
							
								1 23 2 12 15 14 16 26
							 | 
							colrot1 | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝐶  ∈  ( 𝐵 ( LineG ‘ 𝐺 ) 𝑥 )  ∨  𝐵  =  𝑥 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							⊢ ( ≤G ‘ 𝐺 )  =  ( ≤G ‘ 𝐺 )  | 
						
						
							| 29 | 
							
								1 2 4 16 15 14 12
							 | 
							ishlg | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ↔  ( 𝑥  ≠  𝐵  ∧  𝐶  ≠  𝐵  ∧  ( 𝑥  ∈  ( 𝐵 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐵 𝐼 𝑥 ) ) ) ) )  | 
						
						
							| 30 | 
							
								24 29
							 | 
							mpbid | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝑥  ≠  𝐵  ∧  𝐶  ≠  𝐵  ∧  ( 𝑥  ∈  ( 𝐵 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐵 𝐼 𝑥 ) ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							simp3d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝑥  ∈  ( 𝐵 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐵 𝐼 𝑥 ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							orcomd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝐶  ∈  ( 𝐵 𝐼 𝑥 )  ∨  𝑥  ∈  ( 𝐵 𝐼 𝐶 ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simprrl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 )  | 
						
						
							| 34 | 
							
								1 2 4 17 13 14 12
							 | 
							ishlg | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ↔  ( 𝑦  ≠  𝐵  ∧  𝐴  ≠  𝐵  ∧  ( 𝑦  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝑦 ) ) ) ) )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							mpbid | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝑦  ≠  𝐵  ∧  𝐴  ≠  𝐵  ∧  ( 𝑦  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝑦 ) ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							simp3d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝑦  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝑦 ) ) )  | 
						
						
							| 37 | 
							
								1 10 2 28 12 14 15 16 14 14 17 13 32 36 22 18
							 | 
							tgcgrsub2 | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝐶 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝑦 ( dist ‘ 𝐺 ) 𝐴 ) )  | 
						
						
							| 38 | 
							
								1 10 11 12 14 15 16 14 17 13 22 37 19
							 | 
							trgcgr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  〈“ 𝐵 𝐶 𝑥 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐵 𝑦 𝐴 ”〉 )  | 
						
						
							| 39 | 
							
								1 10 2 12 15 17
							 | 
							axtgcgrrflx | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝐶 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( dist ‘ 𝐺 ) 𝐶 ) )  | 
						
						
							| 40 | 
							
								9
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  𝐵  ≠  𝐶 )  | 
						
						
							| 41 | 
							
								1 23 2 12 14 15 16 11 14 17 10 17 13 15 27 38 21 39 40
							 | 
							tgfscgr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐴 ( dist ‘ 𝐺 ) 𝐶 ) )  | 
						
						
							| 42 | 
							
								1 10 2 12 16 17 13 15 41
							 | 
							tgcgrcomlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝑦 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐴 ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							eqcomd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 𝐶 ( dist ‘ 𝐺 ) 𝐴 )  =  ( 𝑦 ( dist ‘ 𝐺 ) 𝑥 ) )  | 
						
						
							| 44 | 
							
								1 10 11 12 13 14 15 16 14 17 20 22 43
							 | 
							trgcgr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝐵 𝑦 ”〉 )  | 
						
						
							| 45 | 
							
								44 24 33
							 | 
							3jca | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝐵 𝑦 ”〉  ∧  𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ) )  | 
						
						
							| 46 | 
							
								9
							 | 
							necomd | 
							⊢ ( 𝜑  →  𝐶  ≠  𝐵 )  | 
						
						
							| 47 | 
							
								8
							 | 
							necomd | 
							⊢ ( 𝜑  →  𝐵  ≠  𝐴 )  | 
						
						
							| 48 | 
							
								1 2 4 6 6 5 3 7 10 46 47
							 | 
							hlcgrex | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑃 ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) ) )  | 
						
						
							| 49 | 
							
								1 2 4 6 6 7 3 5 10 8 9
							 | 
							hlcgrex | 
							⊢ ( 𝜑  →  ∃ 𝑦  ∈  𝑃 ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  | 
						
						
							| 50 | 
							
								
							 | 
							reeanv | 
							⊢ ( ∃ 𝑥  ∈  𝑃 ∃ 𝑦  ∈  𝑃 ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ↔  ( ∃ 𝑥  ∈  𝑃 ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ∃ 𝑦  ∈  𝑃 ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  | 
						
						
							| 51 | 
							
								48 49 50
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑃 ∃ 𝑦  ∈  𝑃 ( ( 𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑥 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐴 ) )  ∧  ( 𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴  ∧  ( 𝐵 ( dist ‘ 𝐺 ) 𝑦 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) )  | 
						
						
							| 52 | 
							
								45 51
							 | 
							reximddv2 | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑃 ∃ 𝑦  ∈  𝑃 ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝐵 𝑦 ”〉  ∧  𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ) )  | 
						
						
							| 53 | 
							
								1 2 4 3 5 6 7 7 6 5
							 | 
							iscgra | 
							⊢ ( 𝜑  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐶 𝐵 𝐴 ”〉  ↔  ∃ 𝑥  ∈  𝑃 ∃ 𝑦  ∈  𝑃 ( 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑥 𝐵 𝑦 ”〉  ∧  𝑥 ( 𝐾 ‘ 𝐵 ) 𝐶  ∧  𝑦 ( 𝐾 ‘ 𝐵 ) 𝐴 ) ) )  | 
						
						
							| 54 | 
							
								52 53
							 | 
							mpbird | 
							⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐶 𝐵 𝐴 ”〉 )  |