Metamath Proof Explorer


Theorem cgraswaplr

Description: Swap both side of angle congruence. (Contributed by Thierry Arnoux, 5-Oct-2020)

Ref Expression
Hypotheses cgracol.p 𝑃 = ( Base ‘ 𝐺 )
cgracol.i 𝐼 = ( Itv ‘ 𝐺 )
cgracol.m = ( dist ‘ 𝐺 )
cgracol.g ( 𝜑𝐺 ∈ TarskiG )
cgracol.a ( 𝜑𝐴𝑃 )
cgracol.b ( 𝜑𝐵𝑃 )
cgracol.c ( 𝜑𝐶𝑃 )
cgracol.d ( 𝜑𝐷𝑃 )
cgracol.e ( 𝜑𝐸𝑃 )
cgracol.f ( 𝜑𝐹𝑃 )
cgracol.1 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
Assertion cgraswaplr ( 𝜑 → ⟨“ 𝐶 𝐵 𝐴 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐹 𝐸 𝐷 ”⟩ )

Proof

Step Hyp Ref Expression
1 cgracol.p 𝑃 = ( Base ‘ 𝐺 )
2 cgracol.i 𝐼 = ( Itv ‘ 𝐺 )
3 cgracol.m = ( dist ‘ 𝐺 )
4 cgracol.g ( 𝜑𝐺 ∈ TarskiG )
5 cgracol.a ( 𝜑𝐴𝑃 )
6 cgracol.b ( 𝜑𝐵𝑃 )
7 cgracol.c ( 𝜑𝐶𝑃 )
8 cgracol.d ( 𝜑𝐷𝑃 )
9 cgracol.e ( 𝜑𝐸𝑃 )
10 cgracol.f ( 𝜑𝐹𝑃 )
11 cgracol.1 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
12 eqid ( hlG ‘ 𝐺 ) = ( hlG ‘ 𝐺 )
13 1 2 12 4 5 6 7 8 9 10 11 cgrane2 ( 𝜑𝐵𝐶 )
14 13 necomd ( 𝜑𝐶𝐵 )
15 1 2 12 4 5 6 7 8 9 10 11 cgrane1 ( 𝜑𝐴𝐵 )
16 15 necomd ( 𝜑𝐵𝐴 )
17 1 2 4 12 7 6 5 14 16 cgraswap ( 𝜑 → ⟨“ 𝐶 𝐵 𝐴 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐴 𝐵 𝐶 ”⟩ )
18 1 2 4 12 7 6 5 5 6 7 17 8 9 10 11 cgratr ( 𝜑 → ⟨“ 𝐶 𝐵 𝐴 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
19 1 2 12 4 5 6 7 8 9 10 11 cgrane3 ( 𝜑𝐸𝐷 )
20 19 necomd ( 𝜑𝐷𝐸 )
21 1 2 12 4 5 6 7 8 9 10 11 cgrane4 ( 𝜑𝐸𝐹 )
22 1 2 4 12 8 9 10 20 21 cgraswap ( 𝜑 → ⟨“ 𝐷 𝐸 𝐹 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐹 𝐸 𝐷 ”⟩ )
23 1 2 4 12 7 6 5 8 9 10 18 10 9 8 22 cgratr ( 𝜑 → ⟨“ 𝐶 𝐵 𝐴 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐹 𝐸 𝐷 ”⟩ )