| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cgsex2g.1 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝜒 ) |
| 2 |
|
cgsex2g.2 |
⊢ ( 𝜒 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 |
2
|
biimpa |
⊢ ( ( 𝜒 ∧ 𝜑 ) → 𝜓 ) |
| 4 |
3
|
exlimivv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝜒 ∧ 𝜑 ) → 𝜓 ) |
| 5 |
|
elisset |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) |
| 6 |
|
elisset |
⊢ ( 𝐵 ∈ 𝑊 → ∃ 𝑦 𝑦 = 𝐵 ) |
| 7 |
5 6
|
anim12i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) |
| 8 |
|
exdistrv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) |
| 9 |
7 8
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 10 |
1
|
2eximi |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ∃ 𝑥 ∃ 𝑦 𝜒 ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∃ 𝑥 ∃ 𝑦 𝜒 ) |
| 12 |
2
|
biimprcd |
⊢ ( 𝜓 → ( 𝜒 → 𝜑 ) ) |
| 13 |
12
|
ancld |
⊢ ( 𝜓 → ( 𝜒 → ( 𝜒 ∧ 𝜑 ) ) ) |
| 14 |
13
|
2eximdv |
⊢ ( 𝜓 → ( ∃ 𝑥 ∃ 𝑦 𝜒 → ∃ 𝑥 ∃ 𝑦 ( 𝜒 ∧ 𝜑 ) ) ) |
| 15 |
11 14
|
syl5com |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝜓 → ∃ 𝑥 ∃ 𝑦 ( 𝜒 ∧ 𝜑 ) ) ) |
| 16 |
4 15
|
impbid2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝜒 ∧ 𝜑 ) ↔ 𝜓 ) ) |