Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cgsexg.1 | ⊢ ( 𝑥 = 𝐴 → 𝜒 ) | |
| cgsexg.2 | ⊢ ( 𝜒 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cgsexg | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ( 𝜒 ∧ 𝜑 ) ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgsexg.1 | ⊢ ( 𝑥 = 𝐴 → 𝜒 ) | |
| 2 | cgsexg.2 | ⊢ ( 𝜒 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 2 | biimpa | ⊢ ( ( 𝜒 ∧ 𝜑 ) → 𝜓 ) |
| 4 | 3 | exlimiv | ⊢ ( ∃ 𝑥 ( 𝜒 ∧ 𝜑 ) → 𝜓 ) |
| 5 | elisset | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) | |
| 6 | 1 | eximi | ⊢ ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 𝜒 ) |
| 7 | 5 6 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝜒 ) |
| 8 | 2 | biimprcd | ⊢ ( 𝜓 → ( 𝜒 → 𝜑 ) ) |
| 9 | 8 | ancld | ⊢ ( 𝜓 → ( 𝜒 → ( 𝜒 ∧ 𝜑 ) ) ) |
| 10 | 9 | eximdv | ⊢ ( 𝜓 → ( ∃ 𝑥 𝜒 → ∃ 𝑥 ( 𝜒 ∧ 𝜑 ) ) ) |
| 11 | 7 10 | syl5com | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝜓 → ∃ 𝑥 ( 𝜒 ∧ 𝜑 ) ) ) |
| 12 | 4 11 | impbid2 | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ( 𝜒 ∧ 𝜑 ) ↔ 𝜓 ) ) |