Metamath Proof Explorer


Theorem cgsexg

Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007)

Ref Expression
Hypotheses cgsexg.1 ( 𝑥 = 𝐴𝜒 )
cgsexg.2 ( 𝜒 → ( 𝜑𝜓 ) )
Assertion cgsexg ( 𝐴𝑉 → ( ∃ 𝑥 ( 𝜒𝜑 ) ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 cgsexg.1 ( 𝑥 = 𝐴𝜒 )
2 cgsexg.2 ( 𝜒 → ( 𝜑𝜓 ) )
3 2 biimpa ( ( 𝜒𝜑 ) → 𝜓 )
4 3 exlimiv ( ∃ 𝑥 ( 𝜒𝜑 ) → 𝜓 )
5 elisset ( 𝐴𝑉 → ∃ 𝑥 𝑥 = 𝐴 )
6 1 eximi ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 𝜒 )
7 5 6 syl ( 𝐴𝑉 → ∃ 𝑥 𝜒 )
8 2 biimprcd ( 𝜓 → ( 𝜒𝜑 ) )
9 8 ancld ( 𝜓 → ( 𝜒 → ( 𝜒𝜑 ) ) )
10 9 eximdv ( 𝜓 → ( ∃ 𝑥 𝜒 → ∃ 𝑥 ( 𝜒𝜑 ) ) )
11 7 10 syl5com ( 𝐴𝑉 → ( 𝜓 → ∃ 𝑥 ( 𝜒𝜑 ) ) )
12 4 11 impbid2 ( 𝐴𝑉 → ( ∃ 𝑥 ( 𝜒𝜑 ) ↔ 𝜓 ) )