Metamath Proof Explorer


Theorem ch0pss

Description: The zero subspace is a proper subset of nonzero Hilbert lattice elements. (Contributed by NM, 9-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion ch0pss ( 𝐴C → ( 0𝐴𝐴 ≠ 0 ) )

Proof

Step Hyp Ref Expression
1 df-pss ( 0𝐴 ↔ ( 0𝐴 ∧ 0𝐴 ) )
2 necom ( 0𝐴𝐴 ≠ 0 )
3 ch0le ( 𝐴C → 0𝐴 )
4 3 biantrurd ( 𝐴C → ( 0𝐴 ↔ ( 0𝐴 ∧ 0𝐴 ) ) )
5 2 4 bitr3id ( 𝐴C → ( 𝐴 ≠ 0 ↔ ( 0𝐴 ∧ 0𝐴 ) ) )
6 1 5 bitr4id ( 𝐴C → ( 0𝐴𝐴 ≠ 0 ) )