Description: The zero subspace is a proper subset of nonzero Hilbert lattice elements. (Contributed by NM, 9-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ch0pss | ⊢ ( 𝐴 ∈ Cℋ → ( 0ℋ ⊊ 𝐴 ↔ 𝐴 ≠ 0ℋ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss | ⊢ ( 0ℋ ⊊ 𝐴 ↔ ( 0ℋ ⊆ 𝐴 ∧ 0ℋ ≠ 𝐴 ) ) | |
2 | necom | ⊢ ( 0ℋ ≠ 𝐴 ↔ 𝐴 ≠ 0ℋ ) | |
3 | ch0le | ⊢ ( 𝐴 ∈ Cℋ → 0ℋ ⊆ 𝐴 ) | |
4 | 3 | biantrurd | ⊢ ( 𝐴 ∈ Cℋ → ( 0ℋ ≠ 𝐴 ↔ ( 0ℋ ⊆ 𝐴 ∧ 0ℋ ≠ 𝐴 ) ) ) |
5 | 2 4 | bitr3id | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ≠ 0ℋ ↔ ( 0ℋ ⊆ 𝐴 ∧ 0ℋ ≠ 𝐴 ) ) ) |
6 | 1 5 | bitr4id | ⊢ ( 𝐴 ∈ Cℋ → ( 0ℋ ⊊ 𝐴 ↔ 𝐴 ≠ 0ℋ ) ) |