Metamath Proof Explorer


Theorem chabs1

Description: Hilbert lattice absorption law. From definition of lattice in Kalmbach p. 14. (Contributed by NM, 15-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chabs1 ( ( 𝐴C𝐵C ) → ( 𝐴 ( 𝐴𝐵 ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 ssid 𝐴𝐴
2 inss1 ( 𝐴𝐵 ) ⊆ 𝐴
3 1 2 pm3.2i ( 𝐴𝐴 ∧ ( 𝐴𝐵 ) ⊆ 𝐴 )
4 simpl ( ( 𝐴C𝐵C ) → 𝐴C )
5 chincl ( ( 𝐴C𝐵C ) → ( 𝐴𝐵 ) ∈ C )
6 chlub ( ( 𝐴C ∧ ( 𝐴𝐵 ) ∈ C𝐴C ) → ( ( 𝐴𝐴 ∧ ( 𝐴𝐵 ) ⊆ 𝐴 ) ↔ ( 𝐴 ( 𝐴𝐵 ) ) ⊆ 𝐴 ) )
7 4 5 4 6 syl3anc ( ( 𝐴C𝐵C ) → ( ( 𝐴𝐴 ∧ ( 𝐴𝐵 ) ⊆ 𝐴 ) ↔ ( 𝐴 ( 𝐴𝐵 ) ) ⊆ 𝐴 ) )
8 3 7 mpbii ( ( 𝐴C𝐵C ) → ( 𝐴 ( 𝐴𝐵 ) ) ⊆ 𝐴 )
9 chub1 ( ( 𝐴C ∧ ( 𝐴𝐵 ) ∈ C ) → 𝐴 ⊆ ( 𝐴 ( 𝐴𝐵 ) ) )
10 5 9 syldan ( ( 𝐴C𝐵C ) → 𝐴 ⊆ ( 𝐴 ( 𝐴𝐵 ) ) )
11 8 10 eqssd ( ( 𝐴C𝐵C ) → ( 𝐴 ( 𝐴𝐵 ) ) = 𝐴 )