Metamath Proof Explorer


Theorem chabs2

Description: Hilbert lattice absorption law. From definition of lattice in Kalmbach p. 14. (Contributed by NM, 16-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chabs2 ( ( 𝐴C𝐵C ) → ( 𝐴 ∩ ( 𝐴 𝐵 ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 chub1 ( ( 𝐴C𝐵C ) → 𝐴 ⊆ ( 𝐴 𝐵 ) )
2 ssid 𝐴𝐴
3 1 2 jctil ( ( 𝐴C𝐵C ) → ( 𝐴𝐴𝐴 ⊆ ( 𝐴 𝐵 ) ) )
4 ssin ( ( 𝐴𝐴𝐴 ⊆ ( 𝐴 𝐵 ) ) ↔ 𝐴 ⊆ ( 𝐴 ∩ ( 𝐴 𝐵 ) ) )
5 3 4 sylib ( ( 𝐴C𝐵C ) → 𝐴 ⊆ ( 𝐴 ∩ ( 𝐴 𝐵 ) ) )
6 inss1 ( 𝐴 ∩ ( 𝐴 𝐵 ) ) ⊆ 𝐴
7 5 6 jctil ( ( 𝐴C𝐵C ) → ( ( 𝐴 ∩ ( 𝐴 𝐵 ) ) ⊆ 𝐴𝐴 ⊆ ( 𝐴 ∩ ( 𝐴 𝐵 ) ) ) )
8 eqss ( ( 𝐴 ∩ ( 𝐴 𝐵 ) ) = 𝐴 ↔ ( ( 𝐴 ∩ ( 𝐴 𝐵 ) ) ⊆ 𝐴𝐴 ⊆ ( 𝐴 ∩ ( 𝐴 𝐵 ) ) ) )
9 7 8 sylibr ( ( 𝐴C𝐵C ) → ( 𝐴 ∩ ( 𝐴 𝐵 ) ) = 𝐴 )