Step |
Hyp |
Ref |
Expression |
1 |
|
chcoeffeq.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
chcoeffeq.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
chcoeffeq.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
chcoeffeq.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
5 |
|
chcoeffeq.r |
⊢ × = ( .r ‘ 𝑌 ) |
6 |
|
chcoeffeq.s |
⊢ − = ( -g ‘ 𝑌 ) |
7 |
|
chcoeffeq.0 |
⊢ 0 = ( 0g ‘ 𝑌 ) |
8 |
|
chcoeffeq.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
9 |
|
chcoeffeq.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
10 |
|
chcoeffeq.k |
⊢ 𝐾 = ( 𝐶 ‘ 𝑀 ) |
11 |
|
chcoeffeq.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) |
12 |
|
chcoeffeq.w |
⊢ 𝑊 = ( Base ‘ 𝑌 ) |
13 |
|
chcoeffeq.1 |
⊢ 1 = ( 1r ‘ 𝐴 ) |
14 |
|
chcoeffeq.m |
⊢ ∗ = ( ·𝑠 ‘ 𝐴 ) |
15 |
|
chcoeffeq.u |
⊢ 𝑈 = ( 𝑁 cPolyMatToMat 𝑅 ) |
16 |
|
eqid |
⊢ ( 𝑁 ConstPolyMat 𝑅 ) = ( 𝑁 ConstPolyMat 𝑅 ) |
17 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ 𝑌 ) |
18 |
|
eqid |
⊢ ( 1r ‘ 𝑌 ) = ( 1r ‘ 𝑌 ) |
19 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
20 |
|
eqid |
⊢ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) = ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) |
21 |
|
eqid |
⊢ ( 𝑁 maAdju 𝑃 ) = ( 𝑁 maAdju 𝑃 ) |
22 |
|
eqid |
⊢ ( Poly1 ‘ 𝐴 ) = ( Poly1 ‘ 𝐴 ) |
23 |
|
eqid |
⊢ ( var1 ‘ 𝐴 ) = ( var1 ‘ 𝐴 ) |
24 |
|
eqid |
⊢ ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) = ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) |
25 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) |
26 |
|
eqid |
⊢ ( 𝑁 pMatToMatPoly 𝑅 ) = ( 𝑁 pMatToMatPoly 𝑅 ) |
27 |
1 2 3 4 8 5 6 7 11 16 17 18 19 20 21 12 22 23 24 25 15 26
|
cpmadumatpoly |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
28 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
29 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
30 |
|
eqid |
⊢ ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) = ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) |
31 |
1 2 3 4 19 28 17 18 29 9 10 30 13 14 8 12 22 23 24 25 26
|
cpmidpmat |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
32 |
|
eqid |
⊢ ( 𝑁 CharPlyMat 𝑅 ) = ( 𝑁 CharPlyMat 𝑅 ) |
33 |
1 2 32 3 4 19 8 6 17 18 20 21 5
|
cpmadurid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) = ( ( ( 𝑁 CharPlyMat 𝑅 ) ‘ 𝑀 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) |
34 |
9
|
fveq1i |
⊢ ( 𝐶 ‘ 𝑀 ) = ( ( 𝑁 CharPlyMat 𝑅 ) ‘ 𝑀 ) |
35 |
10 34
|
eqtri |
⊢ 𝐾 = ( ( 𝑁 CharPlyMat 𝑅 ) ‘ 𝑀 ) |
36 |
35
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐾 = ( ( 𝑁 CharPlyMat 𝑅 ) ‘ 𝑀 ) ) |
37 |
36
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑁 CharPlyMat 𝑅 ) ‘ 𝑀 ) = 𝐾 ) |
38 |
37
|
oveq1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( ( 𝑁 CharPlyMat 𝑅 ) ‘ 𝑀 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) = ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) |
39 |
33 38
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) = ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) |
40 |
|
fveq2 |
⊢ ( ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) = ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) → ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) ) |
41 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) → ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
42 |
41
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ∧ ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) → ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
43 |
|
simpr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ∧ ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) → ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
44 |
42 43
|
eqeq12d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ∧ ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) → ( ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) ↔ ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) |
45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
chcoeffeqlem |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) ) |
46 |
45
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) → ( ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) ) |
47 |
46
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ∧ ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) → ( ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) ) |
48 |
44 47
|
sylbid |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ∧ ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) → ( ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) ) |
49 |
48
|
exp31 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) → ( ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) → ( ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) ) ) ) |
50 |
49
|
com24 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) → ( ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) → ( ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) ) ) ) |
51 |
40 50
|
syl5 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) = ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) → ( ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) → ( ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) ) ) ) |
52 |
51
|
ex |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) = ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) → ( ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) → ( ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) ) ) ) ) |
53 |
52
|
com24 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) → ( ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) = ( 𝐾 ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) → ( ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) ) ) ) ) |
54 |
31 39 53
|
mp2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) ) ) |
55 |
54
|
impl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) ) |
56 |
55
|
reximdva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) → ( ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) → ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) ) |
57 |
56
|
reximdva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( ( 𝑁 pMatToMatPoly 𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑁 maAdju 𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) ( ·𝑠 ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) = ( ( Poly1 ‘ 𝐴 ) Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ( ·𝑠 ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) ) |
58 |
27 57
|
mpd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ∀ 𝑛 ∈ ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 1 ) ) |