| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isch3 | ⊢ ( 𝐻  ∈   Cℋ   ↔  ( 𝐻  ∈   Sℋ   ∧  ∀ 𝑓  ∈  Cauchy ( 𝑓 : ℕ ⟶ 𝐻  →  ∃ 𝑥  ∈  𝐻 𝑓  ⇝𝑣  𝑥 ) ) ) | 
						
							| 2 | 1 | simprbi | ⊢ ( 𝐻  ∈   Cℋ   →  ∀ 𝑓  ∈  Cauchy ( 𝑓 : ℕ ⟶ 𝐻  →  ∃ 𝑥  ∈  𝐻 𝑓  ⇝𝑣  𝑥 ) ) | 
						
							| 3 |  | feq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 : ℕ ⟶ 𝐻  ↔  𝐹 : ℕ ⟶ 𝐻 ) ) | 
						
							| 4 |  | breq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓  ⇝𝑣  𝑥  ↔  𝐹  ⇝𝑣  𝑥 ) ) | 
						
							| 5 | 4 | rexbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∃ 𝑥  ∈  𝐻 𝑓  ⇝𝑣  𝑥  ↔  ∃ 𝑥  ∈  𝐻 𝐹  ⇝𝑣  𝑥 ) ) | 
						
							| 6 | 3 5 | imbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 : ℕ ⟶ 𝐻  →  ∃ 𝑥  ∈  𝐻 𝑓  ⇝𝑣  𝑥 )  ↔  ( 𝐹 : ℕ ⟶ 𝐻  →  ∃ 𝑥  ∈  𝐻 𝐹  ⇝𝑣  𝑥 ) ) ) | 
						
							| 7 | 6 | rspccv | ⊢ ( ∀ 𝑓  ∈  Cauchy ( 𝑓 : ℕ ⟶ 𝐻  →  ∃ 𝑥  ∈  𝐻 𝑓  ⇝𝑣  𝑥 )  →  ( 𝐹  ∈  Cauchy  →  ( 𝐹 : ℕ ⟶ 𝐻  →  ∃ 𝑥  ∈  𝐻 𝐹  ⇝𝑣  𝑥 ) ) ) | 
						
							| 8 | 2 7 | syl | ⊢ ( 𝐻  ∈   Cℋ   →  ( 𝐹  ∈  Cauchy  →  ( 𝐹 : ℕ ⟶ 𝐻  →  ∃ 𝑥  ∈  𝐻 𝐹  ⇝𝑣  𝑥 ) ) ) | 
						
							| 9 | 8 | 3imp | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐹  ∈  Cauchy  ∧  𝐹 : ℕ ⟶ 𝐻 )  →  ∃ 𝑥  ∈  𝐻 𝐹  ⇝𝑣  𝑥 ) |