Step |
Hyp |
Ref |
Expression |
1 |
|
isch3 |
⊢ ( 𝐻 ∈ Cℋ ↔ ( 𝐻 ∈ Sℋ ∧ ∀ 𝑓 ∈ Cauchy ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) ) |
2 |
1
|
simprbi |
⊢ ( 𝐻 ∈ Cℋ → ∀ 𝑓 ∈ Cauchy ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ) |
3 |
|
feq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : ℕ ⟶ 𝐻 ↔ 𝐹 : ℕ ⟶ 𝐻 ) ) |
4 |
|
breq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ⇝𝑣 𝑥 ↔ 𝐹 ⇝𝑣 𝑥 ) ) |
5 |
4
|
rexbidv |
⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ↔ ∃ 𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥 ) ) |
6 |
3 5
|
imbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) ↔ ( 𝐹 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥 ) ) ) |
7 |
6
|
rspccv |
⊢ ( ∀ 𝑓 ∈ Cauchy ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝑓 ⇝𝑣 𝑥 ) → ( 𝐹 ∈ Cauchy → ( 𝐹 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥 ) ) ) |
8 |
2 7
|
syl |
⊢ ( 𝐻 ∈ Cℋ → ( 𝐹 ∈ Cauchy → ( 𝐹 : ℕ ⟶ 𝐻 → ∃ 𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥 ) ) ) |
9 |
8
|
3imp |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐹 ∈ Cauchy ∧ 𝐹 : ℕ ⟶ 𝐻 ) → ∃ 𝑥 ∈ 𝐻 𝐹 ⇝𝑣 𝑥 ) |