Metamath Proof Explorer


Theorem chcompl

Description: Completeness of a closed subspace of Hilbert space. (Contributed by NM, 4-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion chcompl ( ( 𝐻C𝐹 ∈ Cauchy ∧ 𝐹 : ℕ ⟶ 𝐻 ) → ∃ 𝑥𝐻 𝐹𝑣 𝑥 )

Proof

Step Hyp Ref Expression
1 isch3 ( 𝐻C ↔ ( 𝐻S ∧ ∀ 𝑓 ∈ Cauchy ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥𝐻 𝑓𝑣 𝑥 ) ) )
2 1 simprbi ( 𝐻C → ∀ 𝑓 ∈ Cauchy ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥𝐻 𝑓𝑣 𝑥 ) )
3 feq1 ( 𝑓 = 𝐹 → ( 𝑓 : ℕ ⟶ 𝐻𝐹 : ℕ ⟶ 𝐻 ) )
4 breq1 ( 𝑓 = 𝐹 → ( 𝑓𝑣 𝑥𝐹𝑣 𝑥 ) )
5 4 rexbidv ( 𝑓 = 𝐹 → ( ∃ 𝑥𝐻 𝑓𝑣 𝑥 ↔ ∃ 𝑥𝐻 𝐹𝑣 𝑥 ) )
6 3 5 imbi12d ( 𝑓 = 𝐹 → ( ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥𝐻 𝑓𝑣 𝑥 ) ↔ ( 𝐹 : ℕ ⟶ 𝐻 → ∃ 𝑥𝐻 𝐹𝑣 𝑥 ) ) )
7 6 rspccv ( ∀ 𝑓 ∈ Cauchy ( 𝑓 : ℕ ⟶ 𝐻 → ∃ 𝑥𝐻 𝑓𝑣 𝑥 ) → ( 𝐹 ∈ Cauchy → ( 𝐹 : ℕ ⟶ 𝐻 → ∃ 𝑥𝐻 𝐹𝑣 𝑥 ) ) )
8 2 7 syl ( 𝐻C → ( 𝐹 ∈ Cauchy → ( 𝐹 : ℕ ⟶ 𝐻 → ∃ 𝑥𝐻 𝐹𝑣 𝑥 ) ) )
9 8 3imp ( ( 𝐻C𝐹 ∈ Cauchy ∧ 𝐹 : ℕ ⟶ 𝐻 ) → ∃ 𝑥𝐻 𝐹𝑣 𝑥 )