Metamath Proof Explorer


Theorem chcon3i

Description: Hilbert lattice contraposition law. (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 𝐴C
chjcl.2 𝐵C
Assertion chcon3i ( 𝐴 = 𝐵 ↔ ( ⊥ ‘ 𝐵 ) = ( ⊥ ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ch0le.1 𝐴C
2 chjcl.2 𝐵C
3 1 2 chsscon3i ( 𝐴𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) )
4 2 1 chsscon3i ( 𝐵𝐴 ↔ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝐵 ) )
5 3 4 anbi12i ( ( 𝐴𝐵𝐵𝐴 ) ↔ ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ∧ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝐵 ) ) )
6 eqss ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) )
7 eqss ( ( ⊥ ‘ 𝐵 ) = ( ⊥ ‘ 𝐴 ) ↔ ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ∧ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝐵 ) ) )
8 5 6 7 3bitr4i ( 𝐴 = 𝐵 ↔ ( ⊥ ‘ 𝐵 ) = ( ⊥ ‘ 𝐴 ) )