| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							chdmm4 | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 )  ∩  ( ⊥ ‘ 𝐵 ) ) )  =  ( 𝐴  ∨ℋ  𝐵 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							fveq2d | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 )  ∩  ( ⊥ ‘ 𝐵 ) ) ) )  =  ( ⊥ ‘ ( 𝐴  ∨ℋ  𝐵 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							choccl | 
							⊢ ( 𝐴  ∈   Cℋ   →  ( ⊥ ‘ 𝐴 )  ∈   Cℋ  )  | 
						
						
							| 4 | 
							
								
							 | 
							choccl | 
							⊢ ( 𝐵  ∈   Cℋ   →  ( ⊥ ‘ 𝐵 )  ∈   Cℋ  )  | 
						
						
							| 5 | 
							
								
							 | 
							chincl | 
							⊢ ( ( ( ⊥ ‘ 𝐴 )  ∈   Cℋ   ∧  ( ⊥ ‘ 𝐵 )  ∈   Cℋ  )  →  ( ( ⊥ ‘ 𝐴 )  ∩  ( ⊥ ‘ 𝐵 ) )  ∈   Cℋ  )  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							syl2an | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( ( ⊥ ‘ 𝐴 )  ∩  ( ⊥ ‘ 𝐵 ) )  ∈   Cℋ  )  | 
						
						
							| 7 | 
							
								
							 | 
							ococ | 
							⊢ ( ( ( ⊥ ‘ 𝐴 )  ∩  ( ⊥ ‘ 𝐵 ) )  ∈   Cℋ   →  ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 )  ∩  ( ⊥ ‘ 𝐵 ) ) ) )  =  ( ( ⊥ ‘ 𝐴 )  ∩  ( ⊥ ‘ 𝐵 ) ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 )  ∩  ( ⊥ ‘ 𝐵 ) ) ) )  =  ( ( ⊥ ‘ 𝐴 )  ∩  ( ⊥ ‘ 𝐵 ) ) )  | 
						
						
							| 9 | 
							
								2 8
							 | 
							eqtr3d | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( ⊥ ‘ ( 𝐴  ∨ℋ  𝐵 ) )  =  ( ( ⊥ ‘ 𝐴 )  ∩  ( ⊥ ‘ 𝐵 ) ) )  |