Metamath Proof Explorer


Theorem chdmj1

Description: De Morgan's law for join in a Hilbert lattice. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chdmj1 ( ( 𝐴C𝐵C ) → ( ⊥ ‘ ( 𝐴 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 chdmm4 ( ( 𝐴C𝐵C ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( 𝐴 𝐵 ) )
2 1 fveq2d ( ( 𝐴C𝐵C ) → ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ⊥ ‘ ( 𝐴 𝐵 ) ) )
3 choccl ( 𝐴C → ( ⊥ ‘ 𝐴 ) ∈ C )
4 choccl ( 𝐵C → ( ⊥ ‘ 𝐵 ) ∈ C )
5 chincl ( ( ( ⊥ ‘ 𝐴 ) ∈ C ∧ ( ⊥ ‘ 𝐵 ) ∈ C ) → ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∈ C )
6 3 4 5 syl2an ( ( 𝐴C𝐵C ) → ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∈ C )
7 ococ ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∈ C → ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) )
8 6 7 syl ( ( 𝐴C𝐵C ) → ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) )
9 2 8 eqtr3d ( ( 𝐴C𝐵C ) → ( ⊥ ‘ ( 𝐴 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) )