Description: De Morgan's law for join in a Hilbert lattice. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| chjcl.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | chdmj1i | ⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | chjcl.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | 1 2 | chdmm4i | ⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) |
| 4 | 3 | fveq2i | ⊢ ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 5 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 6 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 7 | 5 6 | chincli | ⊢ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
| 8 | 7 | pjococi | ⊢ ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) |
| 9 | 4 8 | eqtr3i | ⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) |