Metamath Proof Explorer


Theorem chdmj2

Description: De Morgan's law for join in a Hilbert lattice. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chdmj2 ( ( 𝐴C𝐵C ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 choccl ( 𝐴C → ( ⊥ ‘ 𝐴 ) ∈ C )
2 chdmj1 ( ( ( ⊥ ‘ 𝐴 ) ∈ C𝐵C ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) = ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) )
3 1 2 sylan ( ( 𝐴C𝐵C ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) = ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) )
4 ococ ( 𝐴C → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 )
5 4 ineq1d ( 𝐴C → ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) )
6 5 adantr ( ( 𝐴C𝐵C ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) )
7 3 6 eqtrd ( ( 𝐴C𝐵C ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) )