Metamath Proof Explorer


Theorem chdmj2i

Description: De Morgan's law for join in a Hilbert lattice. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 𝐴C
chjcl.2 𝐵C
Assertion chdmj2i ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ch0le.1 𝐴C
2 chjcl.2 𝐵C
3 1 choccli ( ⊥ ‘ 𝐴 ) ∈ C
4 3 2 chdmj1i ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) = ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) )
5 1 pjococi ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴
6 5 ineq1i ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) )
7 4 6 eqtri ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) )