Step |
Hyp |
Ref |
Expression |
1 |
|
ch0le.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
chjcl.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
4 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
5 |
3 4
|
chub1i |
⊢ ( ⊥ ‘ 𝐴 ) ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) |
6 |
3 4
|
chjcli |
⊢ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
7 |
1 6
|
chsscon1i |
⊢ ( ( ⊥ ‘ 𝐴 ) ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ↔ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ 𝐴 ) |
8 |
5 7
|
mpbi |
⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ 𝐴 |
9 |
4 3
|
chub2i |
⊢ ( ⊥ ‘ 𝐵 ) ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) |
10 |
2 6
|
chsscon1i |
⊢ ( ( ⊥ ‘ 𝐵 ) ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ↔ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ 𝐵 ) |
11 |
9 10
|
mpbi |
⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ 𝐵 |
12 |
8 11
|
ssini |
⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( 𝐴 ∩ 𝐵 ) |
13 |
1 2
|
chincli |
⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
14 |
6 13
|
chsscon1i |
⊢ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( 𝐴 ∩ 𝐵 ) ↔ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) |
15 |
12 14
|
mpbi |
⊢ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) |
16 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
17 |
13 1
|
chsscon3i |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ↔ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
18 |
16 17
|
mpbi |
⊢ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) |
19 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
20 |
13 2
|
chsscon3i |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
21 |
19 20
|
mpbi |
⊢ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) |
22 |
13
|
choccli |
⊢ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ Cℋ |
23 |
3 4 22
|
chlubii |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
24 |
18 21 23
|
mp2an |
⊢ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) |
25 |
15 24
|
eqssi |
⊢ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) |