Metamath Proof Explorer


Theorem chdmm3i

Description: De Morgan's law for meet in a Hilbert lattice. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 𝐴C
chjcl.2 𝐵C
Assertion chdmm3i ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 )

Proof

Step Hyp Ref Expression
1 ch0le.1 𝐴C
2 chjcl.2 𝐵C
3 2 choccli ( ⊥ ‘ 𝐵 ) ∈ C
4 1 3 chdmm1i ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) )
5 2 pjococi ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = 𝐵
6 5 oveq2i ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 )
7 4 6 eqtri ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 )