Metamath Proof Explorer


Theorem chfacffsupp

Description: The "characteristic factor function" is finitely supported. (Contributed by AV, 20-Nov-2019) (Proof shortened by AV, 23-Dec-2019)

Ref Expression
Hypotheses chfacfisf.a 𝐴 = ( 𝑁 Mat 𝑅 )
chfacfisf.b 𝐵 = ( Base ‘ 𝐴 )
chfacfisf.p 𝑃 = ( Poly1𝑅 )
chfacfisf.y 𝑌 = ( 𝑁 Mat 𝑃 )
chfacfisf.r × = ( .r𝑌 )
chfacfisf.s = ( -g𝑌 )
chfacfisf.0 0 = ( 0g𝑌 )
chfacfisf.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
chfacfisf.g 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) )
Assertion chfacffsupp ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝐺 finSupp ( 0g𝑌 ) )

Proof

Step Hyp Ref Expression
1 chfacfisf.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 chfacfisf.b 𝐵 = ( Base ‘ 𝐴 )
3 chfacfisf.p 𝑃 = ( Poly1𝑅 )
4 chfacfisf.y 𝑌 = ( 𝑁 Mat 𝑃 )
5 chfacfisf.r × = ( .r𝑌 )
6 chfacfisf.s = ( -g𝑌 )
7 chfacfisf.0 0 = ( 0g𝑌 )
8 chfacfisf.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
9 chfacfisf.g 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) )
10 fvexd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 0g𝑌 ) ∈ V )
11 ovex ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ∈ V
12 fvex ( 𝑇 ‘ ( 𝑏𝑠 ) ) ∈ V
13 7 fvexi 0 ∈ V
14 ovex ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ∈ V
15 13 14 ifex if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ∈ V
16 12 15 ifex if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ∈ V
17 11 16 ifex if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) ∈ V
18 17 a1i ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑛 ∈ ℕ0 ) → if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) ∈ V )
19 nnnn0 ( 𝑠 ∈ ℕ → 𝑠 ∈ ℕ0 )
20 peano2nn0 ( 𝑠 ∈ ℕ0 → ( 𝑠 + 1 ) ∈ ℕ0 )
21 19 20 syl ( 𝑠 ∈ ℕ → ( 𝑠 + 1 ) ∈ ℕ0 )
22 21 ad2antrl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑠 + 1 ) ∈ ℕ0 )
23 simplr ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → 𝑘 ∈ ℕ0 )
24 0red ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → 0 ∈ ℝ )
25 nnre ( 𝑠 ∈ ℕ → 𝑠 ∈ ℝ )
26 peano2re ( 𝑠 ∈ ℝ → ( 𝑠 + 1 ) ∈ ℝ )
27 25 26 syl ( 𝑠 ∈ ℕ → ( 𝑠 + 1 ) ∈ ℝ )
28 27 adantr ( ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( 𝑠 + 1 ) ∈ ℝ )
29 28 ad3antlr ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → ( 𝑠 + 1 ) ∈ ℝ )
30 nn0re ( 𝑘 ∈ ℕ0𝑘 ∈ ℝ )
31 30 ad2antlr ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → 𝑘 ∈ ℝ )
32 19 adantr ( ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → 𝑠 ∈ ℕ0 )
33 32 ad2antlr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑠 ∈ ℕ0 )
34 nn0p1gt0 ( 𝑠 ∈ ℕ0 → 0 < ( 𝑠 + 1 ) )
35 33 34 syl ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) → 0 < ( 𝑠 + 1 ) )
36 35 adantr ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → 0 < ( 𝑠 + 1 ) )
37 simpr ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → ( 𝑠 + 1 ) < 𝑘 )
38 24 29 31 36 37 lttrd ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → 0 < 𝑘 )
39 38 gt0ne0d ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → 𝑘 ≠ 0 )
40 39 neneqd ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → ¬ 𝑘 = 0 )
41 40 adantr ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) ∧ 𝑛 = 𝑘 ) → ¬ 𝑘 = 0 )
42 eqeq1 ( 𝑛 = 𝑘 → ( 𝑛 = 0 ↔ 𝑘 = 0 ) )
43 42 notbid ( 𝑛 = 𝑘 → ( ¬ 𝑛 = 0 ↔ ¬ 𝑘 = 0 ) )
44 43 adantl ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) ∧ 𝑛 = 𝑘 ) → ( ¬ 𝑛 = 0 ↔ ¬ 𝑘 = 0 ) )
45 41 44 mpbird ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) ∧ 𝑛 = 𝑘 ) → ¬ 𝑛 = 0 )
46 45 iffalsed ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) ∧ 𝑛 = 𝑘 ) → if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) = if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) )
47 28 ad2antlr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑠 + 1 ) ∈ ℝ )
48 ltne ( ( ( 𝑠 + 1 ) ∈ ℝ ∧ ( 𝑠 + 1 ) < 𝑘 ) → 𝑘 ≠ ( 𝑠 + 1 ) )
49 47 48 sylan ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → 𝑘 ≠ ( 𝑠 + 1 ) )
50 49 neneqd ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → ¬ 𝑘 = ( 𝑠 + 1 ) )
51 50 adantr ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) ∧ 𝑛 = 𝑘 ) → ¬ 𝑘 = ( 𝑠 + 1 ) )
52 eqeq1 ( 𝑛 = 𝑘 → ( 𝑛 = ( 𝑠 + 1 ) ↔ 𝑘 = ( 𝑠 + 1 ) ) )
53 52 notbid ( 𝑛 = 𝑘 → ( ¬ 𝑛 = ( 𝑠 + 1 ) ↔ ¬ 𝑘 = ( 𝑠 + 1 ) ) )
54 53 adantl ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) ∧ 𝑛 = 𝑘 ) → ( ¬ 𝑛 = ( 𝑠 + 1 ) ↔ ¬ 𝑘 = ( 𝑠 + 1 ) ) )
55 51 54 mpbird ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) ∧ 𝑛 = 𝑘 ) → ¬ 𝑛 = ( 𝑠 + 1 ) )
56 55 iffalsed ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) ∧ 𝑛 = 𝑘 ) → if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) = if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) )
57 simplr ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) ∧ 𝑛 = 𝑘 ) → ( 𝑠 + 1 ) < 𝑘 )
58 breq2 ( 𝑛 = 𝑘 → ( ( 𝑠 + 1 ) < 𝑛 ↔ ( 𝑠 + 1 ) < 𝑘 ) )
59 58 adantl ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) ∧ 𝑛 = 𝑘 ) → ( ( 𝑠 + 1 ) < 𝑛 ↔ ( 𝑠 + 1 ) < 𝑘 ) )
60 57 59 mpbird ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) ∧ 𝑛 = 𝑘 ) → ( 𝑠 + 1 ) < 𝑛 )
61 60 iftrued ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) ∧ 𝑛 = 𝑘 ) → if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) = 0 )
62 61 7 eqtrdi ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) ∧ 𝑛 = 𝑘 ) → if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) = ( 0g𝑌 ) )
63 46 56 62 3eqtrd ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) ∧ 𝑛 = 𝑘 ) → if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) = ( 0g𝑌 ) )
64 23 63 csbied ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝑘 ) → 𝑘 / 𝑛 if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) = ( 0g𝑌 ) )
65 64 ex ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑠 + 1 ) < 𝑘 𝑘 / 𝑛 if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) = ( 0g𝑌 ) ) )
66 65 ralrimiva ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ∀ 𝑘 ∈ ℕ0 ( ( 𝑠 + 1 ) < 𝑘 𝑘 / 𝑛 if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) = ( 0g𝑌 ) ) )
67 breq1 ( 𝑙 = ( 𝑠 + 1 ) → ( 𝑙 < 𝑘 ↔ ( 𝑠 + 1 ) < 𝑘 ) )
68 67 rspceaimv ( ( ( 𝑠 + 1 ) ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 ( ( 𝑠 + 1 ) < 𝑘 𝑘 / 𝑛 if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) = ( 0g𝑌 ) ) ) → ∃ 𝑙 ∈ ℕ0𝑘 ∈ ℕ0 ( 𝑙 < 𝑘 𝑘 / 𝑛 if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) = ( 0g𝑌 ) ) )
69 22 66 68 syl2anc ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ∃ 𝑙 ∈ ℕ0𝑘 ∈ ℕ0 ( 𝑙 < 𝑘 𝑘 / 𝑛 if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) = ( 0g𝑌 ) ) )
70 10 18 69 mptnn0fsupp ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) ) finSupp ( 0g𝑌 ) )
71 9 70 eqbrtrid ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝐺 finSupp ( 0g𝑌 ) )