Step |
Hyp |
Ref |
Expression |
1 |
|
cayhamlem1.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
cayhamlem1.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
cayhamlem1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
cayhamlem1.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
5 |
|
cayhamlem1.r |
⊢ × = ( .r ‘ 𝑌 ) |
6 |
|
cayhamlem1.s |
⊢ − = ( -g ‘ 𝑌 ) |
7 |
|
cayhamlem1.0 |
⊢ 0 = ( 0g ‘ 𝑌 ) |
8 |
|
cayhamlem1.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
9 |
|
cayhamlem1.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) |
10 |
|
cayhamlem1.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑌 ) ) |
11 |
|
eluz2 |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ ( 𝑠 + 2 ) ) ↔ ( ( 𝑠 + 2 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ( 𝑠 + 2 ) ≤ 𝐾 ) ) |
12 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ∧ ( 𝑠 + 2 ) ≤ 𝐾 ) → 𝐾 ∈ ℤ ) |
13 |
|
nngt0 |
⊢ ( 𝑠 ∈ ℕ → 0 < 𝑠 ) |
14 |
|
nnre |
⊢ ( 𝑠 ∈ ℕ → 𝑠 ∈ ℝ ) |
15 |
14
|
adantl |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → 𝑠 ∈ ℝ ) |
16 |
|
2rp |
⊢ 2 ∈ ℝ+ |
17 |
16
|
a1i |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → 2 ∈ ℝ+ ) |
18 |
15 17
|
ltaddrpd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → 𝑠 < ( 𝑠 + 2 ) ) |
19 |
|
0red |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → 0 ∈ ℝ ) |
20 |
|
2re |
⊢ 2 ∈ ℝ |
21 |
20
|
a1i |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → 2 ∈ ℝ ) |
22 |
15 21
|
readdcld |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → ( 𝑠 + 2 ) ∈ ℝ ) |
23 |
|
lttr |
⊢ ( ( 0 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ ( 𝑠 + 2 ) ∈ ℝ ) → ( ( 0 < 𝑠 ∧ 𝑠 < ( 𝑠 + 2 ) ) → 0 < ( 𝑠 + 2 ) ) ) |
24 |
19 15 22 23
|
syl3anc |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → ( ( 0 < 𝑠 ∧ 𝑠 < ( 𝑠 + 2 ) ) → 0 < ( 𝑠 + 2 ) ) ) |
25 |
18 24
|
mpan2d |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → ( 0 < 𝑠 → 0 < ( 𝑠 + 2 ) ) ) |
26 |
25
|
ex |
⊢ ( 𝐾 ∈ ℤ → ( 𝑠 ∈ ℕ → ( 0 < 𝑠 → 0 < ( 𝑠 + 2 ) ) ) ) |
27 |
26
|
com13 |
⊢ ( 0 < 𝑠 → ( 𝑠 ∈ ℕ → ( 𝐾 ∈ ℤ → 0 < ( 𝑠 + 2 ) ) ) ) |
28 |
13 27
|
mpcom |
⊢ ( 𝑠 ∈ ℕ → ( 𝐾 ∈ ℤ → 0 < ( 𝑠 + 2 ) ) ) |
29 |
28
|
impcom |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → 0 < ( 𝑠 + 2 ) ) |
30 |
|
zre |
⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) |
31 |
30
|
adantr |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → 𝐾 ∈ ℝ ) |
32 |
|
ltleletr |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝑠 + 2 ) ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( ( 0 < ( 𝑠 + 2 ) ∧ ( 𝑠 + 2 ) ≤ 𝐾 ) → 0 ≤ 𝐾 ) ) |
33 |
19 22 31 32
|
syl3anc |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → ( ( 0 < ( 𝑠 + 2 ) ∧ ( 𝑠 + 2 ) ≤ 𝐾 ) → 0 ≤ 𝐾 ) ) |
34 |
29 33
|
mpand |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → ( ( 𝑠 + 2 ) ≤ 𝐾 → 0 ≤ 𝐾 ) ) |
35 |
34
|
imp |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ∧ ( 𝑠 + 2 ) ≤ 𝐾 ) → 0 ≤ 𝐾 ) |
36 |
|
elnn0z |
⊢ ( 𝐾 ∈ ℕ0 ↔ ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ) ) |
37 |
12 35 36
|
sylanbrc |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ∧ ( 𝑠 + 2 ) ≤ 𝐾 ) → 𝐾 ∈ ℕ0 ) |
38 |
|
nncn |
⊢ ( 𝑠 ∈ ℕ → 𝑠 ∈ ℂ ) |
39 |
|
add1p1 |
⊢ ( 𝑠 ∈ ℂ → ( ( 𝑠 + 1 ) + 1 ) = ( 𝑠 + 2 ) ) |
40 |
38 39
|
syl |
⊢ ( 𝑠 ∈ ℕ → ( ( 𝑠 + 1 ) + 1 ) = ( 𝑠 + 2 ) ) |
41 |
40
|
adantl |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → ( ( 𝑠 + 1 ) + 1 ) = ( 𝑠 + 2 ) ) |
42 |
41
|
eqcomd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → ( 𝑠 + 2 ) = ( ( 𝑠 + 1 ) + 1 ) ) |
43 |
42
|
breq1d |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → ( ( 𝑠 + 2 ) ≤ 𝐾 ↔ ( ( 𝑠 + 1 ) + 1 ) ≤ 𝐾 ) ) |
44 |
|
nnz |
⊢ ( 𝑠 ∈ ℕ → 𝑠 ∈ ℤ ) |
45 |
44
|
peano2zd |
⊢ ( 𝑠 ∈ ℕ → ( 𝑠 + 1 ) ∈ ℤ ) |
46 |
45
|
anim2i |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → ( 𝐾 ∈ ℤ ∧ ( 𝑠 + 1 ) ∈ ℤ ) ) |
47 |
46
|
ancomd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → ( ( 𝑠 + 1 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) ) |
48 |
|
zltp1le |
⊢ ( ( ( 𝑠 + 1 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( ( 𝑠 + 1 ) < 𝐾 ↔ ( ( 𝑠 + 1 ) + 1 ) ≤ 𝐾 ) ) |
49 |
48
|
bicomd |
⊢ ( ( ( 𝑠 + 1 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( ( ( 𝑠 + 1 ) + 1 ) ≤ 𝐾 ↔ ( 𝑠 + 1 ) < 𝐾 ) ) |
50 |
47 49
|
syl |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → ( ( ( 𝑠 + 1 ) + 1 ) ≤ 𝐾 ↔ ( 𝑠 + 1 ) < 𝐾 ) ) |
51 |
43 50
|
bitrd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → ( ( 𝑠 + 2 ) ≤ 𝐾 ↔ ( 𝑠 + 1 ) < 𝐾 ) ) |
52 |
51
|
biimpa |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ∧ ( 𝑠 + 2 ) ≤ 𝐾 ) → ( 𝑠 + 1 ) < 𝐾 ) |
53 |
37 52
|
jca |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ∧ ( 𝑠 + 2 ) ≤ 𝐾 ) → ( 𝐾 ∈ ℕ0 ∧ ( 𝑠 + 1 ) < 𝐾 ) ) |
54 |
53
|
ex |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → ( ( 𝑠 + 2 ) ≤ 𝐾 → ( 𝐾 ∈ ℕ0 ∧ ( 𝑠 + 1 ) < 𝐾 ) ) ) |
55 |
54
|
impancom |
⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝑠 + 2 ) ≤ 𝐾 ) → ( 𝑠 ∈ ℕ → ( 𝐾 ∈ ℕ0 ∧ ( 𝑠 + 1 ) < 𝐾 ) ) ) |
56 |
55
|
3adant1 |
⊢ ( ( ( 𝑠 + 2 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ( 𝑠 + 2 ) ≤ 𝐾 ) → ( 𝑠 ∈ ℕ → ( 𝐾 ∈ ℕ0 ∧ ( 𝑠 + 1 ) < 𝐾 ) ) ) |
57 |
56
|
com12 |
⊢ ( 𝑠 ∈ ℕ → ( ( ( 𝑠 + 2 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ ( 𝑠 + 2 ) ≤ 𝐾 ) → ( 𝐾 ∈ ℕ0 ∧ ( 𝑠 + 1 ) < 𝐾 ) ) ) |
58 |
11 57
|
syl5bi |
⊢ ( 𝑠 ∈ ℕ → ( 𝐾 ∈ ( ℤ≥ ‘ ( 𝑠 + 2 ) ) → ( 𝐾 ∈ ℕ0 ∧ ( 𝑠 + 1 ) < 𝐾 ) ) ) |
59 |
58
|
adantr |
⊢ ( ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝐾 ∈ ( ℤ≥ ‘ ( 𝑠 + 2 ) ) → ( 𝐾 ∈ ℕ0 ∧ ( 𝑠 + 1 ) < 𝐾 ) ) ) |
60 |
59
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝐾 ∈ ( ℤ≥ ‘ ( 𝑠 + 2 ) ) → ( 𝐾 ∈ ℕ0 ∧ ( 𝑠 + 1 ) < 𝐾 ) ) ) |
61 |
|
0red |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) → 0 ∈ ℝ ) |
62 |
|
peano2re |
⊢ ( 𝑠 ∈ ℝ → ( 𝑠 + 1 ) ∈ ℝ ) |
63 |
14 62
|
syl |
⊢ ( 𝑠 ∈ ℕ → ( 𝑠 + 1 ) ∈ ℝ ) |
64 |
63
|
adantr |
⊢ ( ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝑠 + 1 ) ∈ ℝ ) |
65 |
64
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑠 + 1 ) ∈ ℝ ) |
66 |
65
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) → ( 𝑠 + 1 ) ∈ ℝ ) |
67 |
|
nn0re |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ ) |
68 |
67
|
ad2antlr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) → 𝐾 ∈ ℝ ) |
69 |
|
nnnn0 |
⊢ ( 𝑠 ∈ ℕ → 𝑠 ∈ ℕ0 ) |
70 |
69
|
adantr |
⊢ ( ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → 𝑠 ∈ ℕ0 ) |
71 |
70
|
ad2antlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) → 𝑠 ∈ ℕ0 ) |
72 |
|
nn0p1gt0 |
⊢ ( 𝑠 ∈ ℕ0 → 0 < ( 𝑠 + 1 ) ) |
73 |
71 72
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) → 0 < ( 𝑠 + 1 ) ) |
74 |
73
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) → 0 < ( 𝑠 + 1 ) ) |
75 |
|
simpr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) → ( 𝑠 + 1 ) < 𝐾 ) |
76 |
61 66 68 74 75
|
lttrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) → 0 < 𝐾 ) |
77 |
76
|
gt0ne0d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) → 𝐾 ≠ 0 ) |
78 |
77
|
neneqd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) → ¬ 𝐾 = 0 ) |
79 |
78
|
adantr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) ∧ 𝑛 = 𝐾 ) → ¬ 𝐾 = 0 ) |
80 |
|
eqeq1 |
⊢ ( 𝑛 = 𝐾 → ( 𝑛 = 0 ↔ 𝐾 = 0 ) ) |
81 |
80
|
notbid |
⊢ ( 𝑛 = 𝐾 → ( ¬ 𝑛 = 0 ↔ ¬ 𝐾 = 0 ) ) |
82 |
81
|
adantl |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) ∧ 𝑛 = 𝐾 ) → ( ¬ 𝑛 = 0 ↔ ¬ 𝐾 = 0 ) ) |
83 |
79 82
|
mpbird |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) ∧ 𝑛 = 𝐾 ) → ¬ 𝑛 = 0 ) |
84 |
83
|
iffalsed |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) ∧ 𝑛 = 𝐾 ) → if ( 𝑛 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) = if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) |
85 |
64
|
ad2antlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑠 + 1 ) ∈ ℝ ) |
86 |
|
ltne |
⊢ ( ( ( 𝑠 + 1 ) ∈ ℝ ∧ ( 𝑠 + 1 ) < 𝐾 ) → 𝐾 ≠ ( 𝑠 + 1 ) ) |
87 |
85 86
|
sylan |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) → 𝐾 ≠ ( 𝑠 + 1 ) ) |
88 |
87
|
neneqd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) → ¬ 𝐾 = ( 𝑠 + 1 ) ) |
89 |
88
|
adantr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) ∧ 𝑛 = 𝐾 ) → ¬ 𝐾 = ( 𝑠 + 1 ) ) |
90 |
|
eqeq1 |
⊢ ( 𝑛 = 𝐾 → ( 𝑛 = ( 𝑠 + 1 ) ↔ 𝐾 = ( 𝑠 + 1 ) ) ) |
91 |
90
|
notbid |
⊢ ( 𝑛 = 𝐾 → ( ¬ 𝑛 = ( 𝑠 + 1 ) ↔ ¬ 𝐾 = ( 𝑠 + 1 ) ) ) |
92 |
91
|
adantl |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) ∧ 𝑛 = 𝐾 ) → ( ¬ 𝑛 = ( 𝑠 + 1 ) ↔ ¬ 𝐾 = ( 𝑠 + 1 ) ) ) |
93 |
89 92
|
mpbird |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) ∧ 𝑛 = 𝐾 ) → ¬ 𝑛 = ( 𝑠 + 1 ) ) |
94 |
93
|
iffalsed |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) ∧ 𝑛 = 𝐾 ) → if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) = if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) |
95 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) ∧ 𝑛 = 𝐾 ) → ( 𝑠 + 1 ) < 𝐾 ) |
96 |
|
breq2 |
⊢ ( 𝑛 = 𝐾 → ( ( 𝑠 + 1 ) < 𝑛 ↔ ( 𝑠 + 1 ) < 𝐾 ) ) |
97 |
96
|
adantl |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) ∧ 𝑛 = 𝐾 ) → ( ( 𝑠 + 1 ) < 𝑛 ↔ ( 𝑠 + 1 ) < 𝐾 ) ) |
98 |
95 97
|
mpbird |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) ∧ 𝑛 = 𝐾 ) → ( 𝑠 + 1 ) < 𝑛 ) |
99 |
98
|
iftrued |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) ∧ 𝑛 = 𝐾 ) → if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) = 0 ) |
100 |
84 94 99
|
3eqtrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) ∧ 𝑛 = 𝐾 ) → if ( 𝑛 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) = 0 ) |
101 |
|
simplr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) → 𝐾 ∈ ℕ0 ) |
102 |
7
|
fvexi |
⊢ 0 ∈ V |
103 |
102
|
a1i |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) → 0 ∈ V ) |
104 |
9 100 101 103
|
fvmptd2 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) → ( 𝐺 ‘ 𝐾 ) = 0 ) |
105 |
104
|
oveq2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) → ( ( 𝐾 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝐾 ) ) = ( ( 𝐾 ↑ ( 𝑇 ‘ 𝑀 ) ) × 0 ) ) |
106 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
107 |
3 4
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ Ring ) |
108 |
106 107
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ Ring ) |
109 |
108
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ Ring ) |
110 |
109
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑌 ∈ Ring ) |
111 |
110
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) → 𝑌 ∈ Ring ) |
112 |
|
eqid |
⊢ ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 ) |
113 |
112
|
ringmgp |
⊢ ( 𝑌 ∈ Ring → ( mulGrp ‘ 𝑌 ) ∈ Mnd ) |
114 |
109 113
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( mulGrp ‘ 𝑌 ) ∈ Mnd ) |
115 |
114
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( mulGrp ‘ 𝑌 ) ∈ Mnd ) |
116 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 ) |
117 |
8 1 2 3 4
|
mat2pmatbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
118 |
106 117
|
syl3an2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
119 |
118
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
120 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
121 |
112 120
|
mgpbas |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) |
122 |
121 10
|
mulgnn0cl |
⊢ ( ( ( mulGrp ‘ 𝑌 ) ∈ Mnd ∧ 𝐾 ∈ ℕ0 ∧ ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) → ( 𝐾 ↑ ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ) |
123 |
115 116 119 122
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝐾 ↑ ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ) |
124 |
123
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) → ( 𝐾 ↑ ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ) |
125 |
120 5 7
|
ringrz |
⊢ ( ( 𝑌 ∈ Ring ∧ ( 𝐾 ↑ ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝐾 ↑ ( 𝑇 ‘ 𝑀 ) ) × 0 ) = 0 ) |
126 |
111 124 125
|
syl2anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) → ( ( 𝐾 ↑ ( 𝑇 ‘ 𝑀 ) ) × 0 ) = 0 ) |
127 |
105 126
|
eqtrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑠 + 1 ) < 𝐾 ) → ( ( 𝐾 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝐾 ) ) = 0 ) |
128 |
127
|
expl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑠 + 1 ) < 𝐾 ) → ( ( 𝐾 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝐾 ) ) = 0 ) ) |
129 |
60 128
|
syld |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝐾 ∈ ( ℤ≥ ‘ ( 𝑠 + 2 ) ) → ( ( 𝐾 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝐾 ) ) = 0 ) ) |
130 |
129
|
3impia |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑠 + 2 ) ) ) → ( ( 𝐾 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝐾 ) ) = 0 ) |